SLANT HELICES IN MINKOWSKI SPACE E_1^3

Ahmad T. Ali and Rafael López*

ABSTRACT. We consider a curve $\alpha = \alpha(s)$ in Minkowski 3-space \mathbf{E}_1^3 and denote by $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ the Frenet frame of α . We say that α is a slant helix if there exists a fixed direction U of \mathbf{E}_1^3 such that the function $\langle \mathbf{N}(s), U \rangle$ is constant. In this work we give characterizations of slant helices in terms of the curvature and torsion of α . Finally, we discuss the tangent and binormal indicatrices of slant curves, proving that they are helices in \mathbf{E}_1^3 .

1. Introduction and statement of results

Let \mathbf{E}_1^3 be the Minkowski 3-space, that is, \mathbf{E}_1^3 is the real vector space \mathbb{R}^3 endowed with the standard flat metric

$$\langle , \rangle = dx_1^2 + dx_2^2 - dx_3^2$$

where (x_1, x_2, x_3) is a rectangular coordinate system of \mathbf{E}_1^3 . An arbitrary vector $v \in \mathbf{E}_1^3$ is said spacelike if $\langle v, v \rangle > 0$ or v = 0, timelike if $\langle v, v \rangle < 0$, and lightlike (or null) if $\langle v, v \rangle = 0$ and $v \neq 0$. The norm (length) of a vector v is given by $|v| = \sqrt{|\langle v, v \rangle|}$.

Given a regular (smooth) curve $\alpha : I \subset \mathbb{R} \to \mathbf{E}_1^3$, we say that α is spacelike (resp. timelike, lightlike) if $\alpha'(t)$ is spacelike (resp. timelike, lightlike) at any $t \in I$, where $\alpha'(t) = d\alpha/dt$. If α is spacelike or timelike we say that α is a nonnull curve. In such case, we can reparametrize α by the arc-length s = s(t), that is, $|\alpha'(s)| = 1$. We say then that α is arc-length parametrized. If the curve α is lightlike, the acceleration vector $\alpha''(t)$ must be spacelike for all t. We change the parameter t by s = s(t) in such way that $|\alpha''(s)| = 1$ and we say that α is pseudo arc-length parametrized. In any of the above cases, we say that α is a unit speed curve.

Given a unit speed curve α in Minkowski space \mathbf{E}_1^3 it is possible to define a Frenet frame $\{\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}(s)\}$ associated for each point s [5, 7, 10]. Here \mathbf{T} , \mathbf{N} and \mathbf{B} are the tangent, normal and binormal vector field, respectively. The

O2011 The Korean Mathematical Society

Received May 22, 2009.

²⁰¹⁰ Mathematics Subject Classification. 53C40, 53C50.

Key words and phrases. Minkowski 3-space, Frenet equations, slant helix.

^{*}Partially supported by MEC-FEDER grant no. MTM2007-61775 and Junta de Andalucía grant no. P09-FQM-5088.