Common best proximity points: Global optimization of multi-objective functions

S. Sadiq Basha ${ }^{\text {a,** }}$, N. Shahzad ${ }^{\text {b }}$, R. Jeyaraj ${ }^{\text {c }}$
a Department of Mathematics, Anna University, Chennai-600 025, India
${ }^{\text {b }}$ Department of Mathematics, King Abdul Aziz University, P.0.Box 80203, Jeddah 21589, Saudi Arabia
${ }^{\text {c }}$ St. Joseph's College Higher Secondary School, Trichy-620 002, India

A R T I C L E I N F O

Article history:

Received 25 August 2010
Accepted 28 December 2010

Keywords:

Common optimal approximate solution
Common fixed point
Common best proximity point

Abstract

Assume that A and B are non-void subsets of a metric space, and that $S: A \longrightarrow B$ and $T: A \longrightarrow B$ are given non-self-mappings. In light of the fact that S and T are non-self-mappings, it may happen that the equations $S x=x$ and $T x=x$ have no common solution, named a common fixed point of the mappings S and T. Subsequently, in the event that there is no common solution of the preceding equations, one speculates about finding an element x that is in close proximity to $S x$ and $T x$ in the sense that $d(x, S x)$ and $d(x, T x)$ are minimum. Indeed, a common best proximity point theorem investigates the existence of such an optimal approximate solution, named a common best proximity point of the mappings S and T, to the equations $S x=x$ and $T x=x$ when there is no common solution. Moreover, it is emphasized that the real valued functions $x \longrightarrow d(x, S x)$ and $x \longrightarrow d(x, T x)$ evaluate the degree of the error involved for any common approximate solution of the equations $S x=x$ and $T x=x$. Owing to the fact that the distance between x and $S x$, and the distance between x and $T x$ are at least the distance between A and B for all x in A, a common best proximity point theorem accomplishes the global minimum of both functions $x \longrightarrow d(x, S x)$ and $x \longrightarrow d(x, T x)$ by postulating a common approximate solution of the equations $S x=x$ and $T x=x$ for meeting the condition that $d(x, S x)=d(x, T x)=d(A, B)$. This work is devoted to an interesting common best proximity point theorem for pairs of non-self-mappings satisfying a contraction-like condition, thereby producing common optimal approximate solutions of certain simultaneous fixed point equations.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Fixed point theory sheds light on the methodologies for finding a solution to non-linear equations of the type $T x=x$ where T is a self-mapping defined on a subset of a metric space, a normed linear space, a topological vector space or some appropriate space. But, the equation $T x=x$ is unlikely to have a solution when T is not a self-mapping. Therefore, one deals with the problem of finding an element x that is in some sense in close proximity to $T x$. In fact, best approximation theorems and best proximity point theorems are applicable for solving such problems. If K is a non-empty compact convex subset of a Hausdorff locally convex topological vector space E and $T: K \longrightarrow E$ is a non-self-continuous map, then a classical best approximation theorem, due to Fan [1], asserts that there is an element x satisfying the condition that $d(x, T x)=d(T x, K)$. Later, this result was extended in several directions by many authors, including Prolla [2], Reich [3] and Sehgal and Singh [4,5]. A unification of all such best approximation theorems has been accomplished by Vetrivel et al. [6].

[^0]
[^0]: * Corresponding author.

 E-mail addresses: drssb@yahoo.com (S. Sadiq Basha), naseer_shahzad@hotmail.com (N. Shahzad).

