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The main objective of this paper is to present some best proximity point theorems for K-cyclic
mappings and C-cyclic mappings in the frameworks of metric spaces and uniformly convex
Banach spaces, thereby furnishing an optimal approximate solution to the equations of the form
Tx = x where T is a non-self mapping.

1. Introduction

Fixed point theorems delve into the existence of a solution to the equations of the form Tx = x
where T is a self-mapping. However, when T is a nonself-mapping, the equation Tx = x
does not necessarily have a solution, in which case best approximation theorems explore
the existence of an approximate solution whereas best proximity point theorems analyze the
existence of an approximate solution that is optimal. Indeed, a classical and well-known best
approximation theorem, due to Fan [1], contends that if K is a nonempty convex compact
subset of a Hausdorff topological vector space E and T is a continuous non-self mapping from
K to E, then there exists an element x in K such that d(x, Tx) = d(A,B). Subsequently, many
authors, including Prolla [2], Reich [3], and Sehgal and Singh [4, 5], accomplished several
appealing extensions and variants of the preceding best approximation theorem. Further,
Vetrivel et al. [6] elicited a more generalized result that unifies and subsumes many such
results. Despite the fact that best approximation theorems produce an approximate solution
to the equation Tx = x, they may not render an approximate solution that is optimal. On the
contrary, best proximity point theorems are intended to furnish an approximate solution x
that is optimal in the sense that the error d(x, Tx) is minimum. Indeed, in light of the fact


