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a b s t r a c t

Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let Ti : C → C,
i = 1, 2, . . . ,N, be a finite family of Lipschitz pseudocontractive mappings. It is our pur-
pose, in this paper, to prove strong convergence of Ishikawa’s method to a common fixed
point of a finite family of Lipschitz pseudocontractive mappings provided that the interior
of the common fixed points is nonempty. No compactness assumption is imposed either
on T or on C . Moreover, computation of the closed convex set Cn for each n ≥ 1 is not
required. The results obtained in this paper improve on most of the results that have been
proved for this class of nonlinear mappings.
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1. Introduction and preliminaries

Let C be a nonempty subset of a real Hilbert space H . The mapping T : C → H is called Lipschitz or Lipschitz continuous if
there exists L ≥ 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖ ∀x, y ∈ C . (1.1)

If L = 1, then T is called nonexpansive; and if L < 1 then T is called a contraction. It is easy to see from Eq. (1.1) that every
contraction mapping is nonexpansive and every nonexpansive mapping is Lipschitz.

A mapping T : C → H is called α-strictly pseudocontractive in the terminology of Browder and Petryshyn [1] if for all
x, y ∈ C there exists α > 0 such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − α‖x− y− (Tx− Ty)‖2. (1.2)

Without loss of generality we may assume that α ∈ (0, 1). If I denotes the identity operator, then (1.2) can be rewritten as

〈(I − T )x− (I − T )y, j(x− y)〉 ≥ α‖(I − T )x− (I − T )y‖2.
A mapping T is called pseudocontractive if

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 for all x, y ∈ C . (1.3)
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