Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 94, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

BOUNDARY-VALUE PROBLEMS FOR NONLINEAR THIRD-ORDER q-DIFFERENCE EQUATIONS

BASHIR AHMAD

Abstract. This article shows existence results for a boundary-value problem of nonlinear third-order q-difference equations. Our results are based on LeraySchauder degree theory and some standard fixed point theorems.

1. Introduction

The subject of q-difference equations, initiated in the beginning of the 19 th century $[1,6,19,22]$, has evolved into a multidisciplinary subject; see for example $[8,9,10,11,12,13,14,15,18,20,21]$ and references therein. For some recent work on q-difference equations, we refer the reader to $[2,3,5,7,16,17,23]$. However, the theory of boundary-value problems for nonlinear q-difference equations is still in the initial stages and many aspects of this theory need to be explored. To the best of our knowledge, the theory of boundary-value problems for third-order nonlinear q-difference equations is yet to be developed.

In this paper, we discuss the existence of solutions for the nonlinear boundaryvalue problem (BVP) of third-order q-difference equation

$$
\begin{gather*}
D_{q}^{3} u(t)=f(t, u(t)), \quad 0 \leq t \leq 1, \tag{1.1}\\
u(0)=0, \quad D_{q} u(0)=0, \quad u(1)=0,
\end{gather*}
$$

where f is a given continuous function.

2. Preliminaries

Let us recall some basic concepts of q-calculus [15, 21].
For $0<q<1$, we define the q-derivative of a real valued function f as

$$
D_{q} f(t)=\frac{f(t)-f(q t)}{(1-q) t}, \quad D_{q} f(0)=\lim _{t \rightarrow 0} D_{q} f(t)
$$

Higher order q-derivatives are given by

$$
D_{q}^{0} f(t)=f(t), \quad D_{q}^{n} f(t)=D_{q} D_{q}^{n-1} f(t), \quad n \in \mathbb{N}
$$

[^0]
[^0]: 2000 Mathematics Subject Classification. 39A05, 39A13.
 Key words and phrases. q-difference equations; boundary value problems;
 Leray-Schauder degree theory; fixed point theorems.
 © 2011 Texas State University - San Marcos.
 Submitted December 2, 2010. Published July 28, 2011.

