

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Mn^{II}—A fascinating oxidation catalyst: Mechanistic insight into the catalyzed oxidative degradation of organic dyes by H_2O_2

Erika Ember^a, Hanaa Asaad Gazzaz^{a,b}, Sabine Rothbart^a, Ralph Puchta^{a,c}, Rudi van Eldik^{a,*}

^a Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany ^b Department of Chemistry, King Abdul-Aziz University, Jeddah, Saudi Arabia

^c Computer Chemistry Center, University of Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany

ARTICLE INFO

Article history: Received 26 October 2009 Received in revised form 28 November 2009 Accepted 9 December 2009 Available online 29 December 2009

Keywords: Green catalysis Manganese salts Activation of H₂O₂ Oxidative degradation Organic dyes

ABSTRACT

The use of simple Mn^{II} ions as efficient catalyst precursors for the oxidation of different highly stable organic dyes using H_2O_2 as an environmentally benign oxidant under mild reaction conditions, is presented. The role of a series of aromatic dyes in the in situ formation and stabilisation of the active catalyst was studied in detail using stopped-flow techniques and UV-Vis detection. DFT calculations were employed to predict the nature of the role of the substrate in the stabilisation of highly reactive Mn^{II} intermediates. Furthermore, low-temperature EPR measurements were performed in order to characterize the in situ formed catalytically active Mn^{IV}=O intermediate responsible for the fast and versatile oxidation of organic dyes in aqueous solution.

© 2009 Elsevier B.V. All rights reserved.