KINGDOM OF SAUDI ARABIA

Ministry of Higher Education

KING ABDULAZIZ UNIVERSITY

Faculty of Science

Seddik, A.

On the injective norm and characterization of some subclasses of normal operators by inequalities or equalities

(2009) *Journal of Mathematical Analysis and Applications*, 351 (1), pp. 277-284. Cited 1 time.

Department of Mathematics, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia

Abstract

Let B (H) be the C*-algebra of all bounded linear operators acting on a complex Hilbert space H. In this note, we shall show that if S is an invertible normal operator in B (H) the following estimation holds{norm of matrix} S \otimes S-1 + S-1 \otimes S {norm of matrix} $\lambda \leq$ {norm of matrix} S {norm of matrix} {norm of matrix} S-1 {norm of matrix} + frac(1, {norm of matrix} S {norm of matrix} {norm of matrix} S-1 {norm of matrix}) where {norm of matrix} . {norm of matrix} is the injective norm on the tensor product B (H) \otimes B (H). This last inequality becomes an equality when S is invertible self-adjoint. On the other hand, we shall characterize the set of all invertible normal operators S in B (H) satisfying the relation{norm of matrix} S \otimes S-1 + S-1 \otimes S {norm of matrix} + frac(1, {norm of matrix} S {norm of matrix} + S-1 \otimes S {norm of matrix} S {norm of matrix} A = {norm of matrix} S {norm of matrix} S {norm of matrix} S {norm of matrix} A = {norm of matrix} S {norm of matrix} S {norm of matrix} A = {norm of matrix} S {norm of matrix} S {norm of matrix} A = {norm of matrix} S {norm of matrix} S {norm of matrix} A = {norm of matrix} S {norm of matrix} S {norm of matrix} A = {norm of matrix} S {norm of matrix} S {norm of matrix} A = {norm of matrix} S {norm of matrix

Author Keywords

Injective norm; Normal operator; Self-adjoint operator; Tensor product space; Unitary operator

ISSN: 0022247X