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a b s t r a c t

A cell contains thousands of proteins. Many important functions of cell are carried out through the
proteins therein. Proteins rarely function alone. Most of their functions essential to life are associated
with various types of protein–protein interactions (PPIs). Therefore, knowledge of PPIs is fundamental
for both basic research and drug development. With the avalanche of proteins sequences generated in
the postgenomic age, it is highly desired to develop computational methods for timely acquiring this
kind of knowledge. Here, a new predictor, called “iPPI-Emsl”, is developed. In the predictor, a protein
sample is formulated by incorporating the following two types of information into the general form of
PseAAC (pseudo amino acid composition): (1) the physicochemical properties derived from the
constituent amino acids of a protein; and (2) the wavelet transforms derived from the numerical series
along a protein chain. The operation engine to run the predictor is an ensemble classifier formed by
fusing seven individual random forest engines via a voting system. It is demonstrated with the
benchmark dataset from Saccharomyces cerevisiae as well as the dataset from Helicobacter pylori that
the new predictor achieves remarkably higher success rates than any of the existing predictors in this
area. The new predictor' web-server has been established at http://www.jci-bioinfo.cn/iPPI-Esml. For the
convenience of most experimental scientists, we have further provided a step-by-step guide, by which
users can easily get their desired results without the need to follow the complicated mathematics
involved during its development.
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1. Introduction

Proteins play a vital role in nearly all biology functions such as
composing cellular structure and promoting chemical reactions.
Proteins in a cell rarely function in isolation but are actively and
selectively interacting with each other (Fig. 1). Most of their
functions essential to life are associated with different types of
protein–protein interactions (PPIs). For instance, proteins are
modified and degraded by enzyme proteins; many marvelous
biological functions in proteins, such as allosteric regulation, are
realized via the interactions between the protein subunits (Chou,
1989b; Perutz, 1942); signal transmission between cells is via
binding of protein messengers to protein receptors (Chou, 2005a);
proteins are directed to the correct compartments of cells through
binding to other proteins; structural connections between cells are
established via PPIs; the molecular mechanism of muscle contrac-
tion as well as the opening and closing of ion-channels are also
closely associated with PPIs (Huang et al., 2008; OuYang et al.,
2013; Schnell and Chou, 2008).

On the other hand, PPIs are also related to various disease
states. For instance, if a cell suddenly lost some normal or
necessary PPIs, the deprived cell would become “blind” and “deaf”,
completely paralytic finally leading to perish. Also, if many
abnormal or unwanted PPIs suddenly occurred in a cell, the
“unfortunate” cell would completely lose control, leading to net-
work confuse and a terrible disaster.

Accordingly, it is vitally important to characterize PPIs and
understand their interaction network, an important subject in the
discipline called “protein network” or a frontier for investigating
the functional relationship of proteins in a cell. However, it is by no
means an easy job due to the extreme complexity of the problem
concerned. As is well known, using graphical approaches to study
complicated biological problems can provide an intuitive picture
or useful insights for helping analyzing complicated relations in
these systems, as demonstrated by many previous studies on a
series of important biological topics, such as enzyme-catalyzed
reactions (Zhou and Deng, 1984), inhibition of HIV-1 reverse
transcriptase (Althaus et al., 1993a, 1993b) , protein folding
kinetics (Chou, 1990), and using wenxiang diagram or graph
(Chou et al., 2011) to study protein–protein interactions (Zhou,

2011a, 2011b; Zhou and Huang, 2013). In view of this, we are also
using the vertex–arc graph (Fig. 1) to express a protein–protein
interaction network, where the vertex denotes each of the proteins
in the network system while the arc to indicate their relation. As
we can see from the figure, the PPI systems are indeed very
complicated. Therefore, it is absolutely necessary to combine the
experimental and computational approaches together for really
understanding this kind of systems.

During the last decade or so, various experimental techniques
have been developed for determining PPIs, such as yeast two-
hybrid systems (Fields and Song, 1989; Ito et al., 2001), mass
spectrometry (Gavin et al., 2002), and protein chip (Zhu et al.,
2001). But only very small portion of PPI's were identified (Han
et al., 2005) because it was time-consuming, labor-intensive and
expensive by using experimental technique alone.

Fortunately, the success of the human genome project has
provided us with a significant amount of useful data to conduct
statistical analyses in this regard, and hence made it feasible to
predict the PPIs by computational approaches.

Our rationale is as follows. It is virtually axiomatic that the
amino acid sequence of a protein will determine its 3D (three-
dimensional) structure (Anfinsen, 1973); while the latter will
determine its biological function. Accordingly, the sequence infor-
mation alone of proteins can certainly determine their interaction
relationship. Actually, many computational methods have been
proposed in this regard (Chou and Cai, 2006; Espadaler et al.,
2005; Gomez et al., 2003; Guo et al., 2008b; Marcotte et al., 1999;
Shen et al., 2007b; Xia et al., 2010a, 2010b; Yang et al., 2010). Each
of these methods has its own merit, and did play a role in
stimulating the development of this area. However, all the afore-
mentioned methods were based on a single learner without using
the ensemble learning technique, and hence their power might be
limited. Besides, in the aforementioned methods, none of physi-
cochemical properties was taken into account, which might
further limit the prediction quality.

Many evidences have indicated that using ensemble classifier
can significantly enhance the success rates in recognizing protein
fold pattern (Shen and Chou, 2006), identifying membrane protein
types (Shen and Chou, 2007), and predicting protein subcellular
localization (see, e.g., Chou and Shen (2006a), Shen et al. (2007a)).
In other words, in comparison with a single classifier, the ensem-
ble classifier formed by fusing multiple single classifiers can
achieve much better prediction quality with more generalized
ability (Chou and Shen, 2007a; Jia et al., 2011).

Stimulated by the successes of using ensemble classifiers for
predicting protein attributes (Chou and Shen, 2006a; Shen and
Chou, 2006), Nanni et al. (Nanni and Lumini, 2006) developed an
ensemble classifier by fusing K-local hyperplanes for predicting
PPIs, remarkably enhancing the success rate. Unfortunately, for the
prediction method (Nanni and Lumini, 2006), no web-server
whatsoever has been established. Therefore, its practical applica-
tion value is considerably limited, particularly for most experi-
mental scientists.

The present study was aimed at (1) developing a new and more
powerful ensemble classifier by incorporating the physicochemical
properties concerned, and (2) establishing a user-friendly web-
server for the new PPI predictor.

As reflected by a number of recent articles (Chen et al., 2013,
2014a, 2014b; Guo et al., 2014; Lin et al., 2014; Liu et al., 2015b,
2014a, 2014b; Xu et al., 2014b) in response to the call (Chou, 2011),
in presenting a sequence-based statistical predictor for a biological
system, one should make the following five procedures very clear:
(1) how to construct or select a valid benchmark dataset to train
and test the predictor; (2) how to formulate the biological
sequence samples with an effective mathematical expression that
can truly reflect their intrinsic correlation with the target to be

Fig. 1. A complicated protein–protein interaction network is expressed by the
vertex–arc graph, where the vertex is used to represent each of the proteins in the
network system while the arc to indicate their relation. If there is an arc between
two proteins, they are in interaction with each other; otherwise, they are not. For
more about using the graphic approach to deal with complicated biological
systems, see (Chou, 1989a, 2010).
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predicted; (3) how to introduce or develop a powerful algorithm
(or engine) to operate the prediction; (4) how to properly perform
cross-validation tests to objectively evaluate its anticipated accu-
racy; and (5) how to establish a user-friendly web-server that is
accessible to the public. Below, we are to address the five
procedures one-by-one.

2. Material and methods

2.1. Benchmark datasets

Two benchmark datasets were used for the current study. One
is called the S.C. dataset used to study the PPIs in the cell of
Saccharomyces cerevisiae, while the other called the H.P. dataset
used to study the PPIs in the cell of Helicobacter pylori.

2.1.1. S.C. dataset
To obtain a high quality benchmark dataset, the source S. cerevisiae

proteins for the S.C. dataset were collected according to the following
criteria: (1) each of the included proteins must contain at least 50
residues in order to avoid fragments (Chou and Shen, 2007a); (2) none
of the included proteins has Z40% pairwise sequence identity to any
other in order to reduce the homology bias. From the 7374 source
proteins thus obtained and using DIP (database of interacting
proteins) (Xenarios et al., 2002), we can obtain 17,505 interactive
protein pairs. As for the non-interacting pairs that are not readily
available from DIP database, we constructed them as follows. The
non-interactive pairs were generated based on such an assumption
that proteins located at different subcellular localizations do not
interact with each other (Guo et al., 2008a; Shen et al., 2007b). The
subcellular location information of the proteins concerned was
extracted from Swiss-Prot (http://www.expasy.org/sprot/) by consid-
ering the following seven locations: cytoplasm, nucleus, mitochon-
drion, endoplasmic reticulum, Golgi apparatus, peroxisome, and
vacuole. Subsequently, the negative data were formed via pairing
the proteins concerned from one location site with those from a
different one. The following requirement must be satisfied when
doing so (Guo et al., 2008a; Shen et al., 2007b): the non-interacting
pairs thus formed should not also occur in the positive dataset of
interactive pairs. A total of 5943 negative pairs were thus generated.
As pointed out by the authors in (Ben-Hur and Noble, 2006), however,
the restricting negative samples formed from different subcellular
locations may lead to a biased estimate of the accuracy for a PPI
predictor. Therefore, it is necessary to also generate the negative
samples from the same subcellular location to reduce this kind of bias.
In view of this, additional negative samples were generated according
to the principle that the protein pairs at the same localization were
considered as the negative pairs if none of them has occurred in the
yeast positive pairs. Thus, additional 27,204 negative pairs were
generated within each of the aforementioned seven subcellular
locations: 8000 within cytoplasm, 8000 within nucleus, 8284 within
mitochondrion, 1953 within endoplasmic reticulum, 300 within Golgi
apparatus, 171 within peroxisome, and 496 within vacuole. Finally,
the benchmark dataset thus established can be formulated below

SS:C: ¼Sþ
S:C: [ S�

S:C: ð1Þ

where SS:C: is the S.C. benchmark dataset for S. cerevisiae that contains
50,652 protein pairs, of which 17,505 are interactive pairs belonging
to the positive subset Sþ

S:C:, 5943þ27;204¼ 33;147 are non-
interactive pairs belonging to the negative subset S�

S:C:, and [
represents the union in the set theory. For the details of these protein
pairs and their DIP codes, see Supporting information S1.

2.1.2. H.P. dataset
For facilitating comparison later, the benchmark dataset used

to study the PPIs in the cell of H. pylori was taken from (Martin
et al., 2005) since many investigators used it to test their own
methods with the success rates well documented (see, e.g., (Nanni,
2005; Nanni and Lumini, 2006; Xia et al., 2010b)). Likewise, the H.
P. dataset can be formulated as

SH:P: ¼Sþ
H:P: [ S�

H:P: ð2Þ
where SH:P:contains 2,916 H. pylori protein pairs, Sþ

H:P: is the
positive subset containing 1458 interactive protein pairs, and
S�

H:P: is the negative subset containing 1458 non-interactive
protein pairs. For the details of these protein pairs and their
corresponding protein sequences, see Supporting information S2
and S3, respectively.

2.2. Using pseudo amino acid composition to represent protein pairs

One of the most challenging problems in computational biol-
ogy today is how to effectively formulate the sequence of a
biological sample (such as protein, peptide, DNA, or RNA) with a
discrete model or a vector that can considerably keep its sequence
order information or capture its key features. The reasons are as
follows: (1) if using the sequential model, i.e., the model in which
all the samples are represented by their original sequences, it is
hardly able to train a machine that can cover all the possible cases
concerned, as elaborated in Chou (2011). (2) All the existing
computational algorithms, such as optimization approach (Zhang
and Chou, 1992), correlation-angle approach (Chou, 1993), covar-
iance discriminant (CD) (Chen et al., 2012a, , 2012b), LogitBoost
(Feng et al., 2005), SLLE algorithm (Wang et al., 2005), support
vector machine (SVM) (Lin et al., 2014; Xu et al., 2014a), random
forests (Lin et al., 2011), conditional random field (Xu et al., 2013a),
nearest neighbor (NN) (Cai and Chou, 2003), K-nearest neighbor
(KNN) (Shen et al., 2006), OET-KNN (Shen and Chou, 2009a), Fuzzy
K-nearest neighbor (Xiao et al., 2013a), and ML-KNN algorithm
(Xiao et al., 2011), can only handle vector but not sequence
samples.

However, a vector defined in a discrete model may completely
lose the sequence-order information. To cope with such a
dilemma, the approach of pseudo amino acid composition (Chou,
2001a, 2005b) or Chou's PseAAC (Cao et al., 2013; Du et al., 2012;
Lin and Lapointe, 2013) was proposed. Ever since it was introduced
in 2001 (Chou, 2001a), the concept of PseAAC has been widely
used in almost all the areas of computational proteomics, such as
in predicting antifreeze proteins (Mondal and Pai, 2014), predict-
ing protein structural class (Kong et al., 2014; Zhang et al., 2014b),
predicting anticancer peptides (Hajisharifi et al., 2014), identifying
bacterial virulent proteins (Nanni et al., 2012b), predicting protein
subcellular location in various organisms and levels (Kandaswamy
et al., 2010; Li et al., 2014; Mei, 2012; Nanni and Lumini, 2008;
Zhang et al., 2008; Zuo et al., 2014), predicting membrane protein
types (Chen and Li, 2013; Han et al., 2014), discriminating outer
membrane proteins (Hayat and Khan, 2012), analyzing genetic
sequence (Georgiou et al., 2013), identifying cyclin proteins
(Mohabatkar, 2010), predicting GABA(A) receptor proteins
(Mohabatkar et al., 2011), identifying antibacterial peptides
(Khosravian et al., 2013), identifying allergenic proteins
(Mohabatkar et al., 2013), predicting metalloproteinase family
(Mohammad Beigi et al., 2011), identifying GPCRs and their types
(ZiaUr and Khan, 2012), identifying the types of conotoxins (Ding
et al., 2014), identifying protein quaternary structural attributes
(Sun et al., 2012), identifying risk type of human papillomaviruses
(Esmaeili et al., 2010), identifying various PTM (post-translational
modification) sites in proteins (Jia et al., 2014; Qiu et al., 2014b,
2014c; Xu et al., 2013a, 2013b; Zhang et al., 2014a), among many
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others (see a long list of references cited in a recent article (Du
et al., 2014)). It has also been used in some disciplines of drug
development and biomedicine (Zhong and Zhou, 2014) as well as
drug-target area (Chou, 2015). Recently, the concept of PseAAC was
further extended to represent the feature vectors of DNA and
nucleotides (Chen et al., 2013, 2014c; Guo et al., 2014; Liu et al.,
2015a; Qiu et al., 2014a), as well as other biological samples (see,
e.g., Jiang et al. (2013)). Because it has been widely and increas-
ingly used, recently three types of powerful open access soft-ware,
called “PseAAC-Builder” (Du et al., 2012), “propy” (Cao et al., 2013),
and “PseAAC-General” (Du et al., 2014), were established: the
former two are for generating various modes of Chou's special
PseAAC; while the 3rd one for those of Chou's general PseAAC.

According to (Chou, 2011), PseAAC can be generally formulated
as

P¼ ψ1 ψ2 ⋯ ψu ⋯ ψΩ

h iT
ð3Þ

where T is the transpose operator, while Ω an integer to reflect the
vector's dimension. The value of Ω as well as the components
ψuðu¼ 1;2;⋯;ΩÞ in Eq. (3) will depend on how to extract the
desired information from a protein sequence. Below, we are to
describe how to extract the useful information from the afore-
mentioned benchmark datasets to define a pair of proteins via Eq.
(3).

The wavelet transform (Mallat, 1989) is a very effective
approach for using Eq. (3) to formulate a biological sequence, as
demonstrated by a series of recent studies such as (1) using
wavelets to formulate PseAAC (Chou, 2001a, 2005b) for predicting
membrane protein types (Liu et al., 2005), predicting protein
structural classes (Chen et al., 2012a; Li et al., 2009), predicting
enzyme family classes (Qiu et al., 2010), predicting protein
classification (Nanni et al., 2012a), predicting protein quaternary
structural attributes (Sun et al., 2012), predicting types of homo-
oligomers (Qiu et al., 2011a), as well as predicting G-protein-
coupled receptor classes (Qiu et al., 2009); and (2) using wavelets
to formulate PseKNC (pseudo-trinucleotide composition) for pre-
dicting promoters (Zhou et al., 2013). As is well known, in
molecular and cellular biology many remarkable functions in
proteins and DNA can be revealed through the low-frequency (or
terahertz frequency) collective motion (Chou, 1988, 1989b; Chou
and Mao, 1988; Gordon, 2008). In view of this, it would be
particularly intriguing to define the components of Eq. (3) with
the wavelets transform approach because it may help to capture
the features important for studying PPI.

Below, we use the wavelets transform to define each of the
components in Eq. (3) via the amino acid's physicochemical
properties.

3. Physicochemical properties

Given a protein sample with L residues as expressed by

P¼ R1R2R3R4R5R6R7⋯RL ð4Þ
where R1 represents the 1st amino acid residue of the proteinP, R2

the 2nd residue, and so forth. Different types of amino acid in Eq.
(4) may have different physicochemical properties. In this study,
we considered the following seven physicochemical properties:
(1) hydrophobicity (Tanford, 1962) or Φð1Þ; (2) hydrophicility
(Hopp and Woods, 1981) or Φð2Þ; (3) side-chain volume
(Krigbaum and Komoriya, 1979) or Φð3Þ; (4) polarity (Grantham,
1974) or Φð4Þ; (5) polarizability (Charton and Charton, 1982) or Φð5Þ;
(6) solvent-accessible surface area (SASA) (Rose et al., 1985) or
Φð6Þ; and (7) side-chain net charge index (NCI) (Zhou et al., 2006)
or Φð7Þ. Their numerical values are given in Table 1. Thus, the
protein P of Eq. (4) can be encoded into seven different numerical

series, as formulated by

P¼

Φð1Þ
1 Φð1Þ

2 Φð1Þ
3 Φð1Þ

4 Φð1Þ
5 Φð1Þ

6 Φð1Þ
7 ⋯Φð1Þ

L

Φð2Þ
1 Φð2Þ

2 Φð2Þ
3 Φð2Þ

4 Φð2Þ
5 Φð2Þ

6 Φð2Þ
7 ⋯Φð2Þ

L

Φð3Þ
1 Φð3Þ

2 Φð3Þ
3 Φð3Þ

4 Φð3Þ
5 Φð3Þ

6 Φð3Þ
7 ⋯Φð3Þ

L

Φð4Þ
1 Φð4Þ

2 Φð4Þ
3 Φð4Þ

4 Φð4Þ
5 Φð4Þ

6 Φð4Þ
7 ⋯Φð4Þ

L

Φð5Þ
1 Φð5Þ

2 Φð5Þ
3 Φð5Þ

4 Φð5Þ
5 Φð5Þ

6 Φð5Þ
7 ⋯Φð5Þ

L

Φð6Þ
1 Φð6Þ

2 Φð6Þ
3 Φð6Þ

4 Φð6Þ
5 Φð6Þ

6 Φð6Þ
7 ⋯Φð6Þ

L

Φð7Þ
1 Φð7Þ

2 Φð7Þ
3 Φð7Þ

4 Φð7Þ
5 Φð7Þ

6 Φð7Þ
7 ⋯Φð7Þ

L

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð5Þ

where Φð1Þ
1 is the hydrophobicity value of R1 in Eq. (4), Φð2Þ

2 the
hydrophilicity value of R2, and so forth. Note that before substitut-
ing the physicochemical values of Table 1 into Eq. (5), they all are
subjected to the following standard conversion:

ΦðξÞ
i (

ΦðξÞ
i � ΦðξÞ

i

D E

SD ΦðξÞ
i

� � ðξ¼ 1;2;⋯;7; i¼ 1;2;⋯; LÞ ð6Þ

where the symbol hi means taking the average for the quantity
therein over the 20 amino acid types, and SD means the corre-
sponding standard deviation. The converted values via Eq. (6) will
have zero mean value over the 20 amino acid types, and will
remain unchanged if they go thru the same standard conversion
procedure again.

4. Discrete wavelet transform (DWT)

Wavelet transform (WT) is a multi-resolution analysis tool
(Mallat, 1989). It is quite popular for analyzing, de-noising and
compressing signals and images. The WT approach can overcome
the shortcoming of Fourier analysis, which is based on the
functions that are localized in frequency domain but not in time
domain. A digital signal can be decomposed into many groups of
coefficients in different scales with WT, and these coefficient
vectors can exhibit characteristics in time domain and frequency
domain.

The DWT approach can transform a discrete time signal to a
discrete wavelet representation. When using the DWT on any of the
seven numerical series for protein P (cf. Eq. (5)), we can view it as a
discrete time series, with the 1st residue as t ¼ 1, 2nd residue as t ¼ 2,

Table 1
The original values of the seven physicochemical properties ΦðξÞ ðξ¼ 1;2;⋯;7Þ for
the 20 native amino acids (cf. Eq. (5)).

Amino
acid code

Φð1Þ Φð2Þ Φð3Þ Φð4Þ Φð5Þ Φð6Þ Φð7Þ

A 0.620 �0.500 27.500 8.100 0.046 1.181 7.187�10�3

C 0.290 �1.000 44.600 5.500 0.128 1.461 �3.661�10�2

D �0.900 3.000 40.000 13.000 0.105 1.587 �2.382�10�2

E �0.740 3.000 62.000 12.300 0.151 1.862 6.802�10�3

F 1.190 �2.500 115.500 5.200 0.290 2.228 3.755�10�2

G 0.480 0.000 0.000 9.000 0.000 0.881 1.791�10�1

H �0.400 �0.500 79.000 10.400 0.230 2.025 �1.069�10�2

I 1.380 �1.800 93.500 5.200 0.186 1.810 2.163�10�2

K �1.500 3.000 100.000 11.300 0.219 2.258 1.771�10�2

L 1.060 �1.800 93.500 4.900 0.186 1.931 5.167�10�2

M 0.640 �1.300 94.100 5.700 0.221 2.034 2.683�10�3

N �0.780 2.000 58.700 11.600 0.134 1.655 5.392�10�3

P 0.120 0.000 41.900 8.000 0.131 1.468 2.395�10�1

Q �0.850 0.200 80.700 10.500 0.180 1.932 4.921�10�2

R �2.530 3.000 105.000 10.500 0.291 2.560 4.359�10�2

S �0.180 0.300 29.300 9.200 0.062 1.298 4.627�10�3

T �0.050 �0.400 51.300 8.600 0.108 1.525 3.352�10�3

V 1.080 �1.500 71.500 5.900 0.140 1.645 5.700�10�2

W 0.810 �3.400 145.500 5.400 0.409 2.663 3.798�10�2

Y 0.260 �2.300 117.300 6.200 0.298 2.368 2.360�10�2
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and so forth. The discrete time series thus obtained is input into one
high-pass filter and one low-pass filter. The coefficients thus obtained
can be approximately used for the signal's high scale and low
frequency components. In practice, such transform will be applied
recursively on the low-pass series with the Mallat algorithm (Mallat,
1999) until the desired number of iterations is reached. The block
diagram of Fig. 2 illustrates the digital implementation of DWT. In this
study, the decomposition level λ¼ 4 was selected to represent a
protein, which is similar to the treatment of Qiu et al. (2011b).
Accordingly, we can obtain ð4þ1Þ ¼ 5 sub-bands when the discrete
series P was decomposed by DWT with level λ¼ 4 (see Fig. 2). Each of
the five sub-bands has four coefficients: (1) αj, the maximum of the
wavelet coefficients in the j� th sub-band; (2) βj the mean of the
wavelet coefficients in the j� th sub-band; (3) γj the minimum of the
wavelet coefficients in the j� th sub-band; (4) δj the standard
deviation of the wavelet coefficients in the j� th sub-band
ðj¼ 1; 2;⋯; 5Þ. Thus, in a way quite similar to the treatment in (Qiu
et al., 2014b; Xu et al., 2013a, 2013b), each of the components in Eq. (3)
can be formulated as

ψu ¼

αu if 1rur5
βu if 6rur10
γu if 11rur15
δu if 16rur20¼Ω

8>>><
>>>:

ð7Þ

For a protein pair formed by Pk1 and Pk2, the corresponding
PseAAC can be formulated by their orthogonal sum (Chou and Cai,
2006); i.e.,

Pk1 � Pk2 ¼ ψk1
1 ψk1

2 ⋯ ψk1
20 ψk2

1 ψk2
2 ⋯ ψk2

20

h iT
ð8Þ

where Pk1 and Pk2 as well as their components have exactly the same
meaning as those in Eq. (3) except for that they are now referred to a
specified protein Pk1 or Pk2 instead of a general protein P, and the
symbol � represents the sign of orthogonal sum (Chou and Cai, 2006).

Note that when in turn using each of the seven different
physicochemical features (cf. Eq. (5)), we can generate seven
different PseAAC vectors to represent a same protein pair, as
formulated by

Protein� pair¼ Pk1 � Pk2ðξÞ ¼

hydrophobicity ξ¼ 1
hydrophicility ξ¼ 2
side� chain volume ξ¼ 3
polarity ξ¼ 4
polarizability ξ¼ 5
solvent� accessible surface ξ¼ 6
side� chain net charge ξ¼ 7

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9Þ

4.1. Random forest and ensemble classifier

The random forests (RF) algorithm is a powerful algorithm and
has been used in many areas of computational biology (see, e.g.
(Kandaswamy et al., 2011; Lin et al., 2011; Pugalenthi et al., 2012)).
The detailed procedures and formulation of RF have been very
clearly described in (Breiman, 2001), and hence there is no need to
repeat here.

As shown in Eq. (9), a protein pair can be formulated with
seven different PseAAC forms, each of which can be used to train
the RF predictor. Accordingly, we have a total of seven individual
predictors for identifying PPIs, as formulated by

PPI individual predictor¼ℝF ξð Þ ðξ¼ 1;2;⋯;7Þ ð10Þ
where ℝF ξð Þrepresents the RF predictor based on the
ξ� thphysicochemical property (cf. Eqs. (5), (6), (9)).

Now, the problem is how to combine the results from the seven
individual predictors to maximize the prediction quality. As
indicated by a series previous studies, using the ensemble classi-
fier formed by fusing many individual classifiers can remarkably
enhance the success rates in predicting protein subcellular locali-
zation (Chou and Shen, 2006b, 2007b) and protein quaternary
structural attribute (Shen and Chou, 2009b). Encouraged by the
previous investigators' studies, here we are also to develop an
ensemble classifier by fusing the seven individual predictors
ℝF ξð Þ ðξ¼ 1;2;⋯;7Þ through a voting system, as formulated by

ℝFE ¼ℝFð1Þ8ℝFð2Þ8⋯8ℝFð7Þ ¼ 87
ξ ¼ 1ℝFðξÞ ð11Þ

where ℝFE represents the ensemble classifier, and the sym-
bol8denotes the fusing operator. For the detailed procedures of
how to fuse the results from the seven individual predictors to
reach a final outcome via the voting system, see Eqs. 30–35 in
Chou and Shen 2007a), where a crystal clear and elegant deriva-
tion was elaborated and hence there is no need to repeat here. To
provide an intuitive picture, a flowchart is given in Fig. 3 to
illustrate how the seven individual RF predictors are fused into
the ensemble classifier.

The final predictor thus obtained is called “iPPI-Esml”, where
“i” stands for “identify”, “PPI” for “protein–protein interaction”,
and “Esml” for “ensemble learning”.

4.2. Evaluation metrics and validation method

For identifying whether the two counterparts in a pair of
proteins are interacting with each other, four metrics are often
used in literature; they are (1) overall accuracy or Acc, (2)
Mathew's correlation coefficient or MCC, (3) sensitivity or Sn,
and (4) specificity or Sp (see, e.g., Chen et al. (2007)). Unfortu-
nately, the conventional formulations for the four metrics are not
quite intuitive for most experimental scientists, particularly the
one for MCC. Interestingly, by using the symbols and derivation as
used in Chou (2001b) for studying signal peptides, the aforemen-
tioned four metrics can be formulated by a set of equations given
below (Chen et al., 2013; Lin et al., 2014; Qiu et al., 2014a):

Sn¼ 1�N þ
�

N þ 0rSnr1

Sp¼ 1�N �
þ

N � 0rSpr1

Acc¼ Λ ¼ 1�N þ
� þN �

þ
N þ þN � 0rAccr1

MCC ¼ 1� Nþ�
Nþ þN�

þ
N�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þN�

þ �Nþ�
Nþ

� �
1þNþ� �N�

þ
N�

� �r �1rMCCr1

8>>>>>>>>>><
>>>>>>>>>>:

ð12Þ

where Nþ represents the total number of interactive protein pairs
investigated whereas Nþ

� the number of true interactive pairs
incorrectly predicted as the non-interactive pairs; N� the total

Fig. 2. A schematic drawing to illustrate the procedure of multi-level DWT
(discrete wavelet transform). See the text for further explanation.
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number of the non-interactive protein pairs investigated whereas
N�

þ the number of non-interactive protein pairs incorrectly pre-
dicted as the interactive pairs.

Now with Eq. (12) at hands, it is crystal clear to see the
following. When Nþ

� ¼ 0 meaning none of the interactive protein
pairs is incorrectly predicted to be a non-interactive pairs, we have
the sensitivity Sn¼ 1. When Nþ

� ¼Nþ meaning that all the
interactive protein pairs are incorrectly predicted to be non-
interactive protein pairs, we have the sensitivity Sn¼ 0. Likewise,
when N�

þ ¼ 0 meaning none of the non-interactive protein pairs
was incorrectly predicted to be the interactive protein pairs, we
have the specificity Sp¼ 1; whereas N�

þ ¼N� meaning that all the
non-interactive protein pairs were incorrectly predicted as inter-
active pairs, we have the specificity Sp¼ 0. When Nþ

� ¼N�
þ ¼ 0

meaning that none of interactive protein pairs in the positive
dataset and none of the non-interactive protein pairs in the
negative dataset was incorrectly predicted, we have the overall
accuracy Acc¼ 1 and MCC¼ 1; when Nþ

� ¼Nþ and N�
þ ¼N�

meaning that all the interactive protein pairs in the positive
dataset and all the non-interactive protein pairs in the negative
dataset were incorrectly predicted, we have the overall accuracy
Acc¼ 0 and MCC¼ �1; whereas when Nþ

� ¼Nþ =2 and
N�

þ ¼N� =2 we have Acc¼ 0:5 and MCC¼ 0 meaning no better
than random prediction. As we can see from the above discussion
based on Eq. (12), the meanings of sensitivity, specificity, overall
accuracy, and Mathew's correlation coefficient have become much
more intuitive and easier-to-understand.

It should be pointed out, however, the set of metrics as defined
in Eq. (12) is valid only for the single-label systems. For the multi-
label systems whose emergence has become more frequent in
system biology (Chou et al., 2012; Lin et al., 2013; Xiao et al., 2011)
and system medicine (Chen et al., 2012b; Xiao et al., 2013b), a
completely different set of metrics as defined in Chou (2013) is
needed.

With the evaluation metrics available, the next thing is what
validation method should be used to generate the metrics values.

In statistical prediction, the following three cross-validation
methods are often used to derive the metrics values for predictor:
independent dataset test, subsampling (or K-fold cross-validation)

test, and jackknife test (Chou and Zhang, 1995). Of the three
methods, however, the jackknife test is deemed the least arbitrary
that can always yield a unique outcome for a given benchmark
dataset as elucidated in Chou (2011) and demonstrated by Eqs. 28–
32 therein. Accordingly, the jackknife test has been widely recog-
nized and increasingly used by investigators to examine the
quality of various predictors (see, e.g., Chou and Elrod (2002;
Chou and Cai, 2003; Hajisharifi et al., 2014; Mohabatkar et al.,
2013; Mondal and Pai, 2014; Nanni et al., 2014; Shen et al., 2007a;
Zhou, 1998; Zhou and Assa-Munt, 2001; Zhou and Doctor, 2003)).
However, to reduce the computational time, in this study we
adopted the 5-fold cross-validation and 10-fold cross validations,
as done by most investigators with random forests algorithm as
the prediction engine.

4.3. Web-server and user guide

To enhance the value of its practical applications, a web-server
for iPPI-Esml has been established at http://www.jci-bioinfo.cn/
iPPI-Esml. Furthermore, to maximize the convenience for most
experimental scientists, a step-to-step guide or protocol is pro-
vided below:

Step 1: Opening the web-server at http://www.jci-bioinfo.cn/
iPPI-Esml, you will see the top page of iPPI-Emsl on your
computer screen, as shown in Fig. 4. Click on the Read Me
button to see a brief introduction about the PPI predictor.
Step 2: Either type or copy/paste the query protein sequences
into the input box at the center of Fig. 4. The input sequence
should be in the FASTA format. For the examples of sequences
in FASTA format, click the Example button right above the
input box.
Step 3: Click on the Submit button to see the predicted result.
For example, if you use the query protein sequences in the
Example window as the input, you will see the following
shown on the screen of your computer: (1) Proteins example-
1 and 2 belong to non-interacting pair because their voting
score for interaction is 3/7E0.43, smaller than 4/7E0.57.
(2) Proteins example-1 and 3 belong to non-interacting pair

Descriptor 
2

Random 
Forests

Label 1

Feature 
extraction

Results

DWT DWT

Subband 
Features

Subband 
Features

DWT

Subband 
Features

Random 
Forests

Random 
Forests

Label 2 Label 7

Descriptor 
1

Descriptor 
7

Fig. 3. A flowchart to show how an ensemble classifier is formed via a voting system.
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because their voting score for interaction is 3/7E0.43, smaller
than 4/7E0.57. (3) Proteins example-2 and 3 belong to inter-
acting pair because their voting score for interaction is
5/7� 0:71Z4=7� 0:57. All these results are fully consistent
with the experimental observations.
Step 4: As shown on the lower panel of Fig. 4, you may also
choose the batch prediction by entering your e-mail address
and your desired batch input file (in FASTA format) via the
“Browse” button. To see the sample of batch input file, click on
the button Batch-example.
Step 5: Click on the Citation button to find the relevant papers
that document the detailed development and algorithm of iPPI-
Esml.
Step 6: Click the Supporting Information button to download
the benchmark dataset used to train and test the current PPI
predictor.

5. Results and discussion

The proposed predictor was first tested by the benchmark
dataset SS:C: in Eq. (1) from S. cerevisiae, which contains 17,505
interactive protein pairs and 33,147 non-interactive protein pairs
(cf. Supporting Information S1). The benchmark dataset was
randomly separated into a training dataset SS:C: ðtrainÞ and a
testing dataset SS:C: ðtestÞ; i.e.,

SS:C: ¼SS:C: ðtrainÞ [ SS:C: ðtestÞ ð13Þ

where SS:C: ðtrainÞ contains 5943 interactive pairs and 5943 non-
interactive pairs, while SS:C: ðtestÞ contains 11,562 interactive pairs
and 27,204 non-interactive pairs.

Listed in Table 2 are the values of the four metrics (cf. Eq. (12))
obtained by iPPI-Emsl via the 5-fold cross-validation on
SS:C: ðtrainÞ. For facilitating comparison, listed in that table are
also the corresponding rates obtained by the method proposed by
Guo et al. (2008b).

Listed in Table 3 are the corresponding results on the
(11,562þ27,204)¼38,766 samples in the independent testing
dataset SS:C: ðtestÞ but trained with (5943þ5943)¼11,886 sam-
ples in the training dataset SS:C: ðtrainÞ.

It can be clearly seen from Tables 2 and 3, the new predictor
iPPI-Emsl remarkably outperformed the Guo et al.'s method (Guo
et al., 2008b) via both the 5-fold cross-validation and independent
dataset tests, indicating the proposed predictor is indeed a quite
powerful one. Asmentioned in Section 2.1, many state-of-the art predictionmethods

in this area have used the benchmark dataset SH:P: (cf. Eq. (2))
constructed by Martin et al. (2005) from the cell of H. pylori to examine
their success rates. Below,we are also to use the same benchmark dataset
to examine the proposed iPPI-Emsl predictor.

The results obtained by iPPI-Emsl on the benchmark dataset
SH:P: (cf. Supporting information S2 and S3) via the 10-fold cross-
validation test are given in Table 4, where, for facilitating compar-
ison, the rates obtained by the other methods using exactly the
same benchmark dataset and exactly the same cross-validation
approach are also given. As we can see from the table, the new
method proposed in this paper remarkably outperformed all the
other existing methods, once again demonstrating that iPPI-Emsl
is really a very promising predictor for identifying protein–protein
interactions. Particularly, as clearly sown in Table 4, in contrast to
all the other six existing prediction methods without any web-
server provided, the current proposed predictor does provide a
use-friendly web-server that is no doubt very useful for the
majority of experimental scientists in this or related areas.

Why could the proposed method be so powerful? This is
because many key features, which are deeply hidden in compli-
cated protein sequences, can be extracted via the wavelets

iPPI-Esml:an ensemble classifier for the interactions of proteins
by incorporating their physicochemical propertiesand

wavelet transforms into PseAAC
| Read Me | Supporting Information | Citation |

Enter your e-mail address and upload the batch input file (Batch-example). The
predicted result will be sent to you by e-mail once completed; it usually takes 1 
minute for each Protein sequence.

Enter the sequence of query proteins in FASTA format (Example): the number of 
Protein sequences is limited at 100 or less for each submission.  

Batch Submit Cancel

Enter Query Seqences

Submit Cancel

Upload file:

Your Email:
Browse…

Or, Upload a File for Batch Prediction

Fig. 4. A semi-screenshot to show the top-page of the iPPIs-Emsl web-server at
http://www.jci-bioinfo.cn/iPPI-Esml.

Table 2
The results obtained by the 5-fold cross-validation on the dataset. SS:C: ðtrainÞ (cf.
Eq. (13)). See Eq. (12) for the definitions of Acc, MCC, Sn, and Sp.

Method Acc (%) MCC Sn (%) Sp (%)

This papera 84.39 0.6897 87.03 82.13
Guo et al.b 77.96 0.5099 76.84 78.22

a The proposed predictor iPPI-Emsl.
b See Guo et al. (2008b).

Table 3
The results on the (11,562þ27,204)¼38,766 samples in SS:C: ðtestÞ but trained with
(5943þ5943)¼11,886 samples in SS:C: ðtrainÞ.

Method Acc (%) MCC Sn (%) Sp (%)

This papera 86.45 0.6832 75.59 91.53
Guo et al.b 78.65 0.5171 64.85 85.00

a See footnote a of Table 2.
b See footnote a of Table 2.

Table 4
Compared with the other six state-of-art methods via the 10-cross-validation on
the H. pylori dataset (Martin et al., 2005).

Method Acc (%) MCC Sn (%) Sp (%) Web-server

Bock and Gougha 75.80 N/A 69.80 80.20 No
Gao et al.b 80.96 0.5577 78.65 83.20 No
Martinc 83.40 N/A 79.90 85.70 No
Nannid 83.00 N/A 80.60 85.10 No
Nanni and Luminie 86.60 N/A 86.70 85.00 No
Xia et al.f 88.40 N/A 88.20 89.20 No
iPPI-Esmlg 90.75 0.8151 90.41 87.50 Yes

a Results reported by Bock and Gough (2003).
b Results reported by Guo et al. (2008a).
c Results reported by Martin et al. (2005).
d Results reported by Nanni (2005).
e Results reported by Nanni and Lumini (2006).
f Results reported by Xia et al. (2010b).
g Results obtained by the current predictor using the same cross-validation

method on the same benchmark dataset as the aforementioned six state-of-art-
methods.
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transform approach. Just like in dealing with the extremely
complicated internal motions of proteins, it is the key to grasp
the low-frequency collective motion (Chou, 1983, 1984; Chou and
Chen, 1977; Chou et al., 1981; Gordon, 2008; Madkan et al., 2009;
Sobell et al., 1983; Zhou, 1989) for in-depth understanding or
revealing the dynamic mechanisms of their various important
biological functions (Chou, 1988), such as cooperative effects
(Chou, 1989b), allosteric transition (Chou, 1987; Schnell and
Chou, 2008), assembly of microtubules (Chou et al., 1994), and
switch between active and inactive states (Wang and Chou, 2009).

6. Conclusion

In the new PPI predictor, a protein pair is formulated by a
general form of PseAAC whose components are defined via the
following procedures: (1) a protein sequence is converted into a
numerical series via the physicochemical properties of amino
acids; (2) the numerical series is subsequently converted into a
20-D (dimensional) feature vector by means of the DWT techni-
que; and (3) the protein pair sample is an orthogonal sum of the
two 20-D vectors generated from its two counterparts.

The operation engine to run the PPI prediction is an ensemble
classifier formed via a voting system to fuse seven different
random forests classifiers based on seven different physicochem-
ical properties, respectively.

Rigorous cross-validations have indicted that the new predictor
established with the above procedures is very powerful and
promising. It is anticipated that iPPI-Emsl will become a very
useful high throughput tool for predicting protein–protein inter-
actions in cells, stimulating a series of interesting follow-up
researches in this and related areas.
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