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Abstract: With the explosion of protein sequences generated in the postgenomic era, the gap between the number of at-
tribute-known proteins and that of uncharacterized ones has become increasingly large. Knowing the key attributes of pro-
teins is a shortcut for prioritizing drug targets and developing novel new drugs. Unfortunately, it is both time-consuming 
and costly to acquire these kinds of information by purely conducting biological experiments. Therefore, it is highly de-
sired to develop various computational tools for fast and effectively classifying proteins according to their sequence in-
formation alone. The process of developing these high throughput tools is generally involved with the following proce-
dures: (1) constructing benchmark datasets; (2) representing a protein sequence with a discrete numerical model; (3) de-
veloping or introducing a powerful algorithm or machine learning operator to conduct the prediction; (4) estimating the 
anticipated accuracy with a proper and objective test method; and (5) establishing a user-friendly web-server accessible to 
the public. This minireview is focused on the recent progresses in identifying the types of G-protein coupled receptors 
(GPCRs), subcellular localization of proteins, DNA-binding proteins and their binding sites. All these identification tools 
may provide very useful informations for in-depth study of drug metabolism. 

Keywords: GPCR type, protein subcellular localization, DNA-binding protein, discrete model, PseAAC, protein attribute pre-
dictor, web-servers. 

1. INTRODUCTION 

 Proteins perform various functions within living organ-
isms, including catalyzing metabolic reactions, replicating 
DNA, responding to stimuli, and transporting molecules 
from one location to another, etc. Proteins are also essential 
parts of organisms and participate in virtually every process 
within cells. In modern pharmaceutical therapies proteins 
drugs have become increasingly dependent on our knowl-
edge on proteins. The functions of proteins are determined 
by their structures. Many studies have indicated that the in-
formations derived from classifying various attributes of 
proteins, such as G-protein-coupled receptors (GPCRs) 
types, subcellular localization of proteins, and DNA-binding 
proteins, are very useful for rational drug design. 
 GPCRs, also called the 7-transmembrane receptors (Fig.
1), are the largest family of cell surface receptors and are key 
mediators of the effects of numerous endogenous neuro-
transmitters, hormones, cytokines, therapeutic drugs, and 
drugs-of- abuse [1]. They mediate many important physio-
logical functions and are considered as one of the most suc-
cessful therapeutic targets for a broad spectrum of disease. 
The design and implementation of high-throughput GPCR 
assays that allow the cost-effective screening of large  
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compound libraries to identify novel drug candidates are 
critical in early drug discovery [2]. 

Fig. (1). Schematic representation of a GPCR with a trademark of 
seven-transmembrane helices, depicted as cylinders and connected 
by alternating cytoplasmic and extracellular hydrophilic loops. The 
7-helix bundle thus formed has a central pore on its extracellular 
surface. The red entity located in the central pore represents a 
ligand messenger. Reproduced with permission from Chou [2, 165]. 

 Knowledge of subcellular locations (Fig. 2) of proteins 
can provide key hints and useful insights for revealing their 
functions [3-11], helping to understand the intricate path-
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ways that regulate biological processes at the cellular level 
[12-14]. It is also very useful for identifying and prioritizing 
drug targets during the process of drug development. For 
example, the functions of apoptosis proteins are closely re-
lated to their subcellular locations. These proteins are very 
important for understanding the mechanism of programmed 
cell death [10, 15, 16]. Also, knowledge of subcellular local-
ization of viral proteins in a host cell or virus-infected cell is 
closely related to their destructive tendencies and conse-
quence [17-19]. Subcellular localization of proteins is vital 
for the signaling, metabolic or structural properties of the 
cell. Proteins with incorrect subcellular locations can cause 
disorders that involve biogenesis, protein aggregation, cell 
metabolism or signaling [20]. Listed in (Table 1) are some 
human diseases caused by proteins located to the wrong sub-
cellular compartment. 

Fig. (2). Schematic illustration to show the 22 subcellular locations 
of eukaryotic proteins: (1) acrosome, (2) cell membrane, (3) cell 
wall, (4) centriole, (5) chloroplast, (6) cyanelle, (7) cytoplasm, (8) 
cytoskeleton, (9) endoplasmic reticulum, (10) endosome, (11) ex-
tracellular, (12) Golgi apparatus, (13) hydrogenosome, (14) 
lysosome, (15) melanosome, (16) microsome (17) mitochondria, 
(18) nucleus, (19) peroxisome, (20) spindle pole body, (21) syn-
apse, and (22) vacuole. Reproduced from Chou [32] with permis-
sion. 

 DNA-binding proteins (Fig. 3) play crucial roles in vari-
ous biological processes in organisms [21, 22], such as rec-
ognition of specific nucleotide sequences, regulation of tran-
scription, and regulation of gene expression. There are sev-
eral different DNA binding domains in the promoter regions 
of transcription factors including zinc fingers, homeodo-
mains, helix loop helices and leucine zippers. It is estimated 
that in the human genome the total number of transcription 
factors alone can be as high as 3000 or about 10% of all pro-
tein-coding genes. 

 With the explosion of protein sequences generated in the 
postgenomic era, the gap between the number of attribute-
known proteins and that of uncharacterized ones has become 
increasingly large. Many efforts have been made in both 
academic institutions and pharmaceutical industries in order 

to determine the structures and functions of uncharacterized 
proteins by means of various techniques such as cryoelectron 
microscopy, crystallography, and NMR. However, some 
proteins, particularly membrane proteins important for drug 
development, are very difficult to crystallize and most of 
them will not dissolve in normal solvents. Although the re-
cently developed state-of-the-art NMR technique is a very 
powerful tool in determining the 3D structures of membrane 
proteins [23-27], it is time-consuming and costly. Also, al-
though some membrane protein structures can be derived by 
using homology approaches (see, e.g., [28-31]), unfortu-
nately the number of templates for membrane proteins is 
quite limited. For example, more than thousand GPCR se-
quences are known, and much more are expected to come in 
the near future, yet the valid templates for them are only a 
dozen or so. In view of this, it would be highly desired to 
develop novel computational methods to predict various 
function-related attributes [32] of proteins based on their 
primary sequences alone.  

 During the last two decades or so, considerable efforts 
have been invested in this regard. For instance, Naveed et al.
[33] proposed the GPCR-MPredictor, which can efficiently 
predict GPCRs at five levels. Xiao et al. [34, 35] developed 
GPCR-CA and GPCR-2L predictors by hybridizing the fol-
lowing three different modes of pseudo amino acid composi-
tion (PseAAC) [36]: the functional domain PseAAC, low-
frequency Fourier spectrum PseAAC and protein cellular 
automata image PseAAC. Goldfeld et al. [37] presented loop 
structure prediction results of the intracellular and extracellu-
lar loops of four GPCRs; Wu and Xiao et al. [34, 38-42] 
used the accumulation-label scale to predict subcellular loca-
tions of human proteins with both single and multiple sites; 
Wang et al. [43] constructed Virus-ECC-mPLoc predictor, 
which exploited correlations between sub-cellular locations 
and hybridized the gene ontology information with the 
dipeptide composition information; He et al. [44] discussed 
the imbalanced multi-modal multi-label learning for human 
proteins subcellular localization with both single and multi-
ple sites; Chen et al. [45] predicted target DNA sequences of 
DNA-binding proteins based on unbound structures; van 
Dyke et al. [46] identified preferred drug-DNA binding se-
quences; Klein et al. [47] provided two powerful methods: 
the yeast one-hybrid system and the yeast two-hybrid system 
to identify DNA-binding proteins and protein-protein inter-
actions; Lin et al. [48] identified DNA binding proteins us-
ing random forest. Besides, there are many studies for pre-
dicting protein subcellular localization (see, e.g, [5, 49-73] as 
well as a long list references cited in two review articles [9, 
74]. 

 The papers published for protein classification prediction 
or computational proteomics are extremely large. The cur-
rent review was focused on those methods with the follow-
ing features: (i) the capacity to be able to deal with multi-
label systems [32]; (ii) rigorous benchmark datasets estab-
lished by imposing a stringent cutoff threshold to reduce the 
homology bias and redundancy; (iii) novel features to repre-
sent the protein samples; (iv) high application values by pro-
viding user-friendly web-servers. 
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Table 1. Mislocalized Proteins that have been Associated with Human Disease [20]. 

Protein Disease Protein Disease 

SRY Swyer syndrome Rhodopsin Retinitis pigmentosa 

SHOX Léri–Weill dyschondrosteosis AVPR2 Nephrogenic diabetes insipidus 

TRPS1 TRPS ATP7B Wilson disease 

ARX XLAG ABCA1 Tangier disease 

FOXP2 Speech–language disorder Tau Neurodegenerative diseases 

AIRE APECED TARDBP ALS and FTLD 

RPS19 Diamond–Blackfan anemia FUS FTLD 

AGT Primary hyperoxaluria type 1 FOXO Various types of cancer 

hsMOK2 Laminopathy p53 Various types of cancer 

SHOC2 Noonan-like syndrome 

Fig. (3). Illustration to show the binding of a protein (CBF3) with DNA via its A-chain and B-chain. The protein is shown in the ribbon draw-
ing, while DNA in dot-and-stick drawing. Reproduced from Chou [29] with permission.

2. BENCHMARK DATASET CONSTRUCTION 

 Constructing a high quality and updated benchmark 
dataset is crucially important for developing a protein attrib-
ute predictor. To realize this, a feasible way was to collect 
the data from some molecular biology databases, such as 
protein knowledgebase (UniProtKB: http://www.uniprot. 
org), protein data bank (PDB: http://www.rcsb.org/pdb/ 
home/home.do), protein database (http://www.ncbi.nlm.nih. 
gov/protein ) provided by National Center for Biotechnology 
information (NCBI), etc.  
 Another way was to utilize the special databases. For 
example, GPCRDB [75, 76] is a molecular-class information 
system that collects, combines, validates and stores large 
amounts of heterogenous data on GPCRs. Using the 
GPCRDB, Worth et al. [77] presented a comprehensive da-
tabase for GPCR template predictions and homology models, 
named GPCR-SSFE. Tanz et al. [78] constructed a subcellu-
lar location database for Arabidopsis proteins, named 
SUBA3 by combining the manual literature curation of lar-
gescal subcellular proteomics, fluorescent protein visualiza-

tion and protein-protein interaction datasets with subcellular 
targeting calls from 22 prediction programs. Lum et al. [79] 
constructed a database called FunSecKB specially for the 
secreted fungal proteins. 
 The benchmark datasets constructed recently were gener-
ally according to the following the steps.  
Step 1. Searching for protein samples from a database using 
some relevant key words, such as “DNA binding”, “G pro-
tein couple receptors”, and “subcellular location”, etc. 
Step 2. Sequences annotated with “fragment” were excluded; 
also, sequence with less than 50 amino acid (AA) residues 
were removed. 

Step 3. Reducing redundancy and homology bias. Usually, 
the CD-HIT [80, 81] or similar programs was utilized to 
winnow those sequences according to some threshold. For 
example, setting the threshold at 40% [82] would get rid of 
all the proteins from the benchmark dataset that had 40%�

pairwise sequence identity to any other in a same subset; or, 
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to make the threshold even harder by setting it at 25% [74] to 
rid of all the proteins with � 25%  pairwise sequence identity.  

 Finally, the benchmark dataset S  constructed via the 
above steps was further divided into a training dataset 
S Train and an independent testing dataset S Test ; i.e.,  

 

S Train
� S Test

=�

S Train
� S Test

= S

�

�
�

��

            (1)

where � , � , and � represent the symbols for “intersec-
tion”, “union”, and “empty set” in the set theory. If, how-
ever, a predictor was examined by subsampling test or jack-
knife test [83], no such a division was needed since the entire 
benchmark dataset could be used for the purposes of both 
training and testing the predictor without causing any mem-
ory bias problem, as elucidated in [84]. 

3. FORMULATING PROTEIN SAMPLES 

 According to [85] and demonstrated by a series of recent 
publication (see, e.g., [86-93]), a protein or peptide sequence 
in any discrete model can always be expressed by the general 
form of PseAAC [85]; i.e.,  

P = � 1 � 2 � � u � �
�

�
�

�
�

T
        (2)

where P  represent the protein sample or its feature vector, 
T  the transpose operator, while the vector’s dimension �
and components � u  

(u = 1,2,  �, �)  will depend on 
how to extract the desired information from the protein se-
quences. Described below are just for some of these formula-
tions that were often used in protein attribute predictions.  

3.1. GO (Gene Ontology) Formulation 

 The GO project (http://www.geneontology.org) is a ma-
jor bioinformatics initiative with the aim of standardizing the 
representation of gene and gene product attributes across 
species and databases. GO contains three domains: cellular 
component, molecular function, and biological process. Ac-
cordingly, protein samples defined in a GO database space 
would be clustered in a way better reflecting their structure 
and function. GO has become a general feature of pro-
teomics that was commonly used [38, 39, 53, 94-104]. The 
detailed procedures for generating the GO formulation can 
be briefed as follows. 

Step 1. Use BLAST [105] to search the homologous proteins 
of the query protein P  from the Swiss-Prot database, with 
the expect value E�0.001 for the BLAST parameter. 

Step 2. Those proteins which have � 60%  pairwise se-
quence identity with the query protein P  are collected into a 

set,  SP�homo , called the “homology set” of P. All the pro-
teins in SP�homo can be deemed as the “representative pro-

teins” of P and they have their accession numbers clearly 
defined in the Swiss-Prot database. 
Step 3. Search each of these accession numbers collected in 
Step 2 against the GO database at http://www.ebi.ac.uk/ 
GOA to find the corresponding GO numbers. 

Step 4. The query protein P can be expressed via representa-
tive proteins in  SP�homo via Eq.2 with 

(3)

and the value of �  is the maximal number of terms con-
tained in GO database. 

 Although the protein sample formulation derived via the 
above steps could incorporate some GO information, it has a 
shortcoming: only the integer number 0 and 1 were used to 
reflect the GO information. Such an over-simplified formula-
tion might cause some important information loss and hence 
limit the prediction quality. Thus, Wu et al. [38-41, 99, 100] 
proposed the following procedures for improvement.  

 First, the GO database contains many GO terms’ number. 
However, these numbers do not increase successively and 
orderly. For easier handling, a reorganization and compres-
sion procedure was used to renumber them as done in [41, 
106, 107]. The GO database obtained through such a treat-
ment is called GO_compress database. Using GO_compress 
database can reduce the number of elements in Eq.2.
 Second, the elements in Eq.3 were replaced by  

 

� u
GO

=
g(u,k)

k=1

�:P
homo

�
� P

homo           (4)

where  is the number of representative proteins in
, and 

       (5)

 Although the GO formulation could yield better results in 
identifying protein subcellular locations, it might become a 
naught vector or meaningless when the protein P did not 
have significant homology to any protein in the Swiss-Prot 
database. When cases happened like that, the other kind of 
formulations such as the sequential evolutional formulation 
would be adopted as will be mentioned below.  

3.2. Sequential Evolution Information Formulation 

 Biology is a natural science with a historic dimension. 
All biological species have developed starting from a very 
limited number of ancestral species. Their evolution involves 
changes of single residues, insertions and deletions of sev-
eral residues [108], gene doubling, and gene fusion. With 
these changes accumulated for a long period of time, many 
similarities between initial and resultant amino acid se-
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quences are gradually eliminated, but the corresponding pro-
teins may still share many common attributes [31], such as 
having basically the same biological function and residing at 
a same subcellular location. To extract the sequential evolu-
tion information and use it to define the components of Eq.2,
the PSSM (Position Specific Scoring Matrix) was used [38, 
40, 41, 97, 98, 100, 109-111]. 

 The PSSM is a L� 20  matrix which was generated by 
using PSI-BLAST [105] to search the Swiss-Prot database or 
other protein database. 

(0) (0) (0)
1,1 1,2 1,20
(0) (0) (0)
2,1 2,2 2,20(0)

PSSM

(0) (0) (0)
,1 ,2 ,20

P

L L L

m m m
m m m

m m m

� �
� �
� �=
� �
� �
� �� �

�

�

� � � �

�

          (6)

where L is the length of P, (0)
, (1 ,1 20)i jm i L j� � � � repre-

sents the score of the amino acid residue in the i-th position 
of the protein sequence being changed to amino acid type j
during the evolutionary process. Here, the numerical codes 
1, 2, …, 20 are the alphabetical order of their single charac-
ter codes. Because the value of (0)

,i jm may be less than zero, 
in order to make every element in Eq.6 to be greater than 
zero, a conversion was performed through the standard sig-
moid function to make Eq.6 become 

(1) (1) (1)
1,1 1,2 1,20
(1) (1) (1)
2,1 2,2 2,20(1)

PSSM

(1) (1) (1)
,1 ,2 ,20

P

L L L

m m m
m m m

m m m

� �
� �
� �=
� �
� �
� �� �

�

�

� � � �

�

          (7)

where 

( )(0)
,

(1)
,

1 1 ,1 20
1 i j

i j m
m i L j

e�
= � � � �

+
         (8)

 In proteins, the number of amino acids (L) is not the 
same, hence PSSM could not be directly used in machine 
learning. In order to convert variable size L�20 dimension 
PSSM into fixed size dimension input vector used in auto-
matic predictor, two simple strategies were usually adopted: 
(i) all rows of Eq.7 were summed to form a 20-D vector and 
then divide by L; (ii) all rows of Eq.7 belonging to the same 
amino acid were pooled together to form 20 matrices of size 

20AAN � , where NAA
 is the number of amino acid types. So 

we get 20 20 400� = dimension vector to formulate Eq.2
[112, 113]. 
 Above two formulations include too simple statistics in-
formation. Wu et al. [38, 41, 42, 100] proposed “SeqEvo” 
formulation as descried below. 
Step 1. Use the elements in Eq.7 to define a new matrix M
as formulated by 

 

M =

m1,1 m1,2 � m1,20

m2,1 m2,2 � m2,20

� � � �

mL,1 mL,2 � mL,20

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

          (9)

with 

mi, j =
mi, j

(0)
� mj

(0)

SD(mj
(0) )

    (i = 1,2,..., L; j = 1,2,...,20)         (10)

where 

mj
(0)
=

1
L

mi, j
(0)

i=1

L

� ( j = 1,2,...,20)         (11)

is the mean for (0)
, ( 1, 2,..., )i jm i L=  and  

SD mj
(0)( ) = mi, j

(0)
� mj

(0) 2
/ L

i=1

L

�         (12)

is the corresponding standard deviation. 

Step 2. Introduce a new matrix generated by multiplying M
with its own transpose matrix MT ; i.e., 

 

MTM =

mi,1mi,1i=1

L
� mi,1mi,2i=1

L
� � mi,1mi,20i=1

L
�

mi,2mi,1i=1

L
� mi,2mi,2i=1

L
� � mi,2mi,20i=1

L
�

� � � �

mi,20mi,1i=1

L
� mi,20mi,2i=1

L
� � mi,20mi,20i=1

L
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

      (13)

which contains 20 20 400� =  elements. Since Eq.13 is a 
symmetric matrix, we only need the information of its 210 
elements, of which 20 are the diagonal elements and 
(400 20) / 2 190� �  are the lower triangular elements, to 
formulate the protein P; i.e., now for Eq.2, we have 

210� = and that the components ( 1, 2,..., 210)u u� = are 
respectively taken from the 210 diagonal and lower triangu-
lar elements of Eq.13 by following a given order, say from 
left to right and from the 1st row to the last as illustrated by 
the following equation 

 

(1)
(2) (3)
(4) (5) (6)
� � � �

(191) (192) (193) � (210)

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

        (14)

where the numbers in parentheses indicate the order of ele-
ments taken from Eq.13.
 In the above PSSM models, however, only the statistical 
information of PSSM was utilized but the inner interactions 
among the constituent amino acid residues in a protein sam-
ple, or its sequence-order effects, were ignored. To avoid 
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completely lose the sequence-order information associated 
with PSSM, Lin et al. [114] introduced the Grey-PSSM by 
extracting the useful information from Eq.7 to define the 
components of Eq.2. Using the grey system theory [115], the 
following information from the j-th column of Eq.10 can be 
extracted 

a1
j

a2
j

b j

�

�

�
�
�
�

�

�

�
�
�
�

= B j
TB j( )

�1
B j

T U j ( j = 1,2,�,20)         (15)

where 

 

B j =

�m2,j
(1)

�m1,j
(1)
� 0.5m2,j

(1) 1

�m3,j
(1)

� mi,j
(1)

i=1

2

� � 0.5m3,j
(1) 1

� � �

�mk ,j
(1)

� mi,j
(1)

i=1

k�1

� � 0.5mk,j
(1) 1

� � �

�mL,j
(1)

� mi,j
(1)

i=1

L�1

� � 0.5mL,j
(1) 1

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	
	
	
	
	
	

       (16)

and 

 

Uj =

m2,j
(1)
� m1,j

(1)

m3,j
(1)
� m2,j

(1)

�

mk,j
(1)
� mk-1,j

(1)

�

mL,j
(1)
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(1)

�

�

�
�
�
�
�
�
�
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�

�

�

�
�
�
�
�
�
�
�
�

         (17)

 Therefore, when using the Grey-PSSM approach, the 
value of �  in Eq.2 would equal to 60 and the components 

( 1, 2,...,60)u u� = were formulated by: 

 

�
3j-2
E

= a1
j f jw1

�
3j-1
E

= a2
j f jw2

�
3j
E
= b j f jw3

�

�

�
�

�

�
�

( j= 1,2,�,20)          (18)

where 1w , 2w  and 3w  are the weight factor; 

( 1, 2, , 20)jf j = �  were the occurrence frequencies of the 
20 amino acids. 

 The rationale for introducing the grey model as done 
above is that we only know the score of each amino acid 
resides in protein sequence beings changed to other amino 
acid resides during evolutionary process, but we do not un-
derstand the intrinsic information of overall sequence evolu-
tionary. So the protein sequence evolution information could 
be viewed as a “grey system”. Grey model is particularly 
useful to deal with this kind of grey systems. Grey model is 
built on an Accumulated Generating Operation, which could 
reduce the stochastic noise of raw series. Hence, the afore-
mentioned Grey-PSSM formulation could more effectively 
incorporate the protein sequence evolution information than 
the simple statistical approaches as reflected by remarkably 
enhancing the success rates thus achieved.  

3.3. Cellular Automation (CA) Image 

 Protein sequences stored in databases are often strings of 
characters, and how to read or compare them is one of the 
basic problems we are often encountered with. It would act 
like a snail’s pace for human beings to read these sequences 
with the naked eyes. Also, it is very hard to extract any key 
features by directly reading these sequences. Visualization 
may be a good choice. By encoding a protein sequence into 
digital format with genetic and physical chemistry informa-
tion, followed by using cellular automaton to evolve a 2-
dimensional image by taking into account the interaction 
between amino acids, many important features, which are 
originally hidden in the bimolecular sequence, can be clearly 
revealed thru its cellular automaton image as demonstrated 
Xiao et al. [35, 116]. According to Wolfram’s theory, each 
protein sequence is corresponding to a cellular automaton 
image with its own textural feature. Accordingly, those pro-
teins that belong to a same attribute must have some similar 
textures in their cellular automaton images [35]. Thus, the 
features extracted from their cellular automaton images can 
be used to cluster or distinguish various attributes of pro-
teins.  
 It is instructive to point out that in most common visual 
methods, the point of the special curve corresponding to a 
certain amino acid was colligated only with the residues 
prior to it, while the effects of all the residues behind it were 
totally ignored. This is inconsistent with the real world that 
all the residues in a protein are coupled with each other as an 
entity in nature. In the aforementioned cellular automata 
image approach, however, the residues in a protein were 
coupled with each other as an entity. In the process of pro-
ducing the protein image, the state of cell corresponding to a 
certain amino acid was colligated with resides both prior to 
and behind it. Accordingly, the cellular automata image ap-
proach could find some implicit sequence features, and these 
features were difficult to be found by other gene visualiza-
tions. The GLCM factors extracted from CA images of pro-
teins could more effectively reflect their overall sequence 
patterns so as to enhance the power of the corresponding 
predictor. 

3.4. Grey-PseAAC (Pseudo Amino Acid Composition) 

 Lin et al. [48] introduced a new and simple PseAAC 
model, the so-called Grey-PseAAC. In that model, they 
firstly converted a protein P to a series of real numbers ac-
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cording to (Table 1) of [48]: ( )1 2 Nx x x�  where N is 

the length of P. Secondly, they extracted the grey system 
information [ ]1 2a a b  according to the following equa-

tion 

a1

a2

b

�

�

�
�
�
�

�

�

�
�
�
�

= BTB( )
�1

BTU         (19)
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and 
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Thus, the protein P can be formulated by Eq.2 with 

� i =

fi (1� i � 20)

a1 i = 21

a2 i = 22

b i = 23

�

�

�
�
�

�

�
�
�

         (22)

where if  (i=1,2, …, 20) are the normalized occurrence fre-
quencies of the 20 native amino acids in the protein P.

3.5. Web-Servers for PseAAC Generators 

 Besides the above approaches, there are many other 
PseAAC modes to formulate the protein sample P. Among 
them are the Discrete Wavelet Transform (DWT) for 
PseAAC [118], Function Domain PseAAC, Dipeptide Com-
position PseAAC, Low-Frequency Fourier Spectrum Mode 
[119, 120], and protein-protein interaction (PPI) [48, 121, 
122]. It is instructive to point out that, because PseAAC has 
been widely and increasingly used, recently two powerful 

soft-wares, called ‘PseAAC-Builder’ [123] and ‘propy’ 
[124], were established for generating various special 
PseAAC components, in addition to the web-server 
‘PseAAC’ [125] built in 2008. 

4. PREDICTION ALGORITHMS 

 Once the formulation for protein samples are defined, 
there are many well-known algorithms to operate the predic-
tion, such as the Covariance Discriminant (CA) [10, 11, 126, 
127], Nearest Neighbor (NN) [106, 128], Artificial Neural 
Network (ANN) [129, 130], support vector machine (SVM) 
[33, 60, 110, 131-139], K-Nearest neighbor [74, 140], GIA-
Nearest neighbor [141], Adaptive K-nearest neighbor, and 
Fuzzy K-nearest neighbor. Below, let us focus on some other 
algorithms.  

4.1. Random Forest Algorithms 

 The Random Forest (RF) algorithm [142-144] is a popu-
lar machine learning algorithm and recently it has been suc-
cessfully employed in dealing with various biological predic-
tion problems [48, 109, 133, 145-147]. RF builds many tree 
predictors on the values of a random vector sampled inde-
pendently and they have the same distribution. Subsequently, 
RF integrates those tree predictors. It has been shown that 
combining multiple trees produced in randomly selected 
subspaces can significantly improve the prediction accuracy. 
RF performs a type of cross-validation by using out-of-bag 
samples. For more detailed information about the RF algo-
rithm, refer to the web-page at http://www.stat.berkeley.edu/ 
~breiman/RandomForests/cc_home.htm, where the code of 
RF for FORTRAN 77 can be download. Besides, the RF 
software package for MATLAB is available at http://code. 
google.com/p/randomforest-matlab/. When using these RF 
tool, the user is not required to know much knowledge about 
RF but only the two important functions: one is 
“classRF_train” for training given data and returning the 
prediction model; the other is “classRF_predict” for predict-
ing query input with the prediction model [117]. 

4.2. Multi-label Predicting Algorithms 

 Most of existing predictors were developed to deal with 
single-label systems. For example, in dealing with protein 
subcellular location, it was assumed that each protein in the 
system concerned had one and only one subcellular location 
and hence needed only a single label to annotate it. However, 
increasing evidences have indicated that many proteins in a 
cell are actually formed a multi-label system in which some 
of them may have two or more subcellular location sites or 
attributes, and hence were called “multiplex proteins” need-
ing two or more labels to annotate them [32].  
 To deal with multi-label systems, various multi-label 
machine learning algorithms were introduced [38-41, 71, 99-
101, 148]. Below, let us introduce the Multi-Label KNN 
classifier. 

4.3. Maximum Relevance Minimum Redundancy Algo-
rithms 

 In classification prediction, the feature selection is an 
important procedure for enhancing the performance of the 
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classifier. In this regard, the maximum relevance minimum 
redundancy (mRMR) method was used to select the optimal 
features in the protein feature space [133, 149-157] to en-
hance the prediction quality. For more detailed information 
about the mRMR approach, refer to the aforementioned pa-
pers and the references cited therein. 

5. WEB SERVERS 

 A user-friendly and publicly accessible web-server repre-
sents the future direction for developing practically more 
useful models [158, 159]. In this section, let us summarize 
the relevant web-server available.  

5.1. GPCR-MPredictor [33] 

 GPCR-MPredictor is freely available at http://111.68. 
99.218/gpcr-mpredictor/. It can efficiently predict GPCRs at 
five levels. The first level determines whether a protein se-
quence is a GPCR or a non-GPCR. If the predicted sequence 
is a GPCR, then it is further classified into family, subfam-
ily, sub-subfamily, and subtype levels. 

5.2. iLoc-Gpos [38] 

 iLoc-Gpos is freely available at http://www.jci-bio 
info.cn/iLoc-Gpos. It was developed for predicting the sub-
cellular localization of Gram positive bacterial proteins with 
both single-location and multiple-location sites. 

5.3. iLoc-Virus [39] 

 iLoc-Virus is freely accessible to the public at 
http://www.jci-bioinfo.cn/iLoc-Virus. It hybridized the gene 
ontology information with the sequential evolution informa-
tion. It can be utilized to identify viral proteins among the 
following six locations: (1) viral capsid, (2) host cell mem-
brane, (3) host endoplasmic reticulum, (4) host cytoplasm, 
(5) host nucleus, and (6) secreted. The iLoc-Virus predictor 
not only can more accurately predict the location sites of 
viral proteins in a host cell, but also have the capacity to deal 
with virus proteins having more than one location. 

5.4. iLoc-Hum [100] 

 iLoc-Hum is freely accessible to the public at 
http://www.jci-bioinfo.cn/iLoc-Hum , It was developed for 
identifying the subcellular localization of human proteins 
with both single and multiple location sites. It covers the 
following 14 location sites: centrosome, cytoplasm, cy-
toskeleton, endoplasmic reticulum, endosome, extracellular, 
Golgi apparatus, lysosome, microsome, mitochondrion, nu-
cleus, peroxisome, plasma membrane, and synapse, where 
some proteins belong to two, three or four locations. 

5.5. iLoc-Gneg [99] 

 iLoc-Gneg is freely accessible to the public at 
http://www.jci-bioinfo.cn/iLoc-Gneg. It was developed for 
predicting the subcellular localization of gram-positive bac-
terial proteins with both single-location and multiple-
location sites. The dataset contains 1,392 gram-negative bac-
terial proteins classified into the following eight locations: 
(1) cytoplasm, (2) extracellular, (3) fimbrium, (4) flagellum, 

(5) inner membrane, (6) nucleoid, (7) outer membrane, and 
(8) periplasm. Of the 1,392 proteins, 1,328 are each with 
only one subcellular location and the other 64 are each with 
two subcellular locations. 

5.6. iLoc-Euk [41] 

 iLoc-Euk is freely accessible to the public at the web-site 
http://www.jci-bioinfo.cn/iLoc-Euk. It works on a bench-
mark dataset of eukaryotic proteins classified into the fol-
lowing 22 location sites: (1) acrosome, (2) cell membrane, 
(3) cell wall, (4) centriole, (5) chloroplast, (6) cyanelle, (7) 
cytoplasm, (8) cytoskeleton, (9) endoplasmic reticulum, (10) 
endosome, (11) extracellular, (12) Golgi apparatus, (13) hy-
drogenosome, (14) lysosome, (15) melanosome, (16) micro-
some (17) mitochondrion, (18) nucleus, (19) peroxisome, 
(20) spindle pole body, (21) synapse, and (22) vacuole. It is 
significantly higher than that by any of the existing predic-
tors that also have the capacity to deal with such a compli-
cated and stringent system. 

5.7. iLoc-Plant [40] 

 iLoc-Plant is freely accessible to the public at the web-
site http://www.jci-bioinfo.cn/iLoc-Plant. It works on a 
benchmark dataset of plant proteins classified into the fol-
lowing 12 location sites: (1) cell membrane, (2) cell wall, (3) 
chloroplast, (4) cytoplasm, (5) endoplasmic reticulum, (6) 
extracellular, (7) Golgi apparatus, (8) mitochondrion, (9) 
nucleus, (10) peroxisome, (11) plastid, and (12) vacuole, 
where some proteins belong to two or three locations. 

5.8. iLoc-Animal [160] 

 iLoc-Animal is freely accessible to the public at the 
web-site http://www.jci-bioinfo.cn/iLoc-Animal. It can be 
used to identified the subcellular locations of animal pro-
teins among following 20 location sites: (1) acrosome, (2) 
cell membrane, (3) centriole, (4) centrosome, (5) cell cor-
tex, (6) cytoplasm, (7) cytoskeleton, (8) endoplasmic re-
ticulum, (9) endosome, (10) extracellular, (11) Golgi appa-
ratus, (12) lysosome, (13) mitochondrion, (14) melano-
some, (15) microsome, (16) nucleus, (17) peroxisome, (18) 
plasma membrane, (19) spindle, and (20) synapse for both 
single-label and multi-label cases. 

5.9. ngLOC [161] 

 ngLOC web server is accessible at http://ngloc.unmc.edu. 
ngLOC is an n-gram-based Bayesian classifier that predicts 
subcellular localization of proteins both in prokaryotes and 
eukaryotes. This program can predict 11 distinct locations 
each in plant and animal species. ngLOC also predicts 4 and 
5 distinct locations on gram-positive and gram-negative bac-
terial datasets, respectively. 

5.10. iSMP-Grey [114] 

 iSMP-Grey is freely accessible to the public at 
http://www.jci-bioinfo.cn/iSMP-Grey. It can be used to iden-
tify the secretory proteins of malaria parasite based on the 
protein sequence information alone. 
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5.11. DR_bind [162] 

 DR_bind server is freely available at http://dnasite. 
limlab.ibms.sinica.edu.tw. It is a web server that automati-
cally predicts DNA-binding residues, given the respective 
protein structure based on (i) electrostatics, (ii) evolution and 
(iii) geometry. 

5.12. iDNA-Prot [48] 

 iDNA-Prot is freely accessible to the public at the web-
site on http://www.jci-bioinfo.cn/iDNA-Prot. By incorpo-
rating the features into the general form of pseudo amino 
acid composition that were extracted from protein se-
quences via the "grey model" and by adopting the random 
forest operation engine, iDNA-Prot can identify uncharac-
terized proteins as DNA-binding proteins or non-DNA 
binding proteins based on their amino acid sequences in-
formation alone. 

5.13. Swfoldrate [163] 

 The prediction server is freely available at http://www. 
jci-bioinfo.cn/swfrate/input.jsp. The predictor was achieved 
on the basis of multitudinous physicochemical features and 
statistical features from protein using nonlinear support vec-
tor machine (SVM) regression model, the method obtained 
an excellent agreement between predicted and experimen-
tally observed folding rates of proteins. 

5.14. iNR-PhysChem [139] 

 PhysChem is freely accessible to the public at either 
http://www.jci-bioinfo.cn/iNR-PhysChem. iNR-PhysChem 
introduced a novel mode of pseudo amino acid composition 

(PseAAC) whose components were derived from a physi-
cal-chemical matrix via a series of auto-covariance and 
cross-covariance transformations. It was observed that the 
overall success rate achieved by iNR-PhysChem was over 
98% in identifying NRs or non-NRs, and over 92% in iden-
tifying NRs among the following seven subfamilies: NR1--
thyroid hormone like, NR2--HNF4-like, NR3--estrogen 
like, NR4--nerve growth factor IB-like, NR5--fushi tarazu-
F1 like, NR6--germ cell nuclear factor like, and NR0--
knirps like. 

5.15. NR-2L [164] 

 NR-2L is freely accessible at http://www.jci-
bioinfo.cn/NR2L. It is a two-level predictor, which was de-
veloped that can be used to identify a query protein as a nu-
clear receptor or not based on its sequence information 
alone; if it is, the prediction will be automatically continued 
to further identify it among the following seven subfamilies: 
(1) thyroid hormone like (NR1), (2) HNF4-like (NR2), (3) 
estrogen like, (4) nerve growth factor IB-like (NR4), (5) fu-
shi tarazu-F1 like (NR5), (6) germ cell nuclear factor like 
(NR6), and (7) knirps like (NR0). The identification was 
made by the Fuzzy K nearest neighbor (FK-NN) classifier 
based on the pseudo amino acid composition formed by in-
corporating various physicochemical and statistical features 
derived from the protein sequences, such as amino acid 
composition, dipeptide composition, complexity factor, and 
low-frequency Fourier spectrum components. 

 For reader’s convenience, a brief description for each of 
the web servers described above are listed in (Table 2). 

Table 2. List of the 15 Servers Introduced in this Paper As well As their Website Addresses and Targets. 

No Name Website Address Target 

1 GPCR-MPredictor http://111.68.99.218/gpcr-mpredictor/ GPCRs family 

2 iLoc-Gpos http://www.jci-bioinfo.cn/iLoc-Gpos Subcellular location 

3 iLoc-Virus http://www.jci-bioinfo.cn/iLoc-Virus Subcellular location 

4 iLoc-Hum http://www.jci-bioinfo.cn/iLoc-Hum Subcellular location 

5 iLoc-Gneg http://www.jci-bioinfo.cn/iLoc-Gneg Subcellular location 

6 iLoc-Euk http://www.jci-bioinfo.cn/iLoc-Euk Subcellular location 

7 iLoc-Plant http://www.jci-bioinfo.cn/iLoc-Plant Subcellular location 

8 iLoc-Animal http://www.jci-bioinfo.cn/iLoc-Animal Subcellular location 

9 ngLOC http://ngloc.unmc.edu Subcellular location 

10 iSMP-Grey http://www.jci-bioinfo.cn/iSMP-Grey Secretory proteins of malaria parasite 

11 DR_bind http://dnasite.limlab.ibms.sinica.edu.tw DNA-binding residues 

12 iDNA-Prot http://www.jci-bioinfo.cn/iDNA-Prot DNA-binding protein 

13 Swfoldrate http://www.jci-bioinfo.cn/swfrate/input.jsp Protein folding 

14 iNR-PhysChem http://www.jci-bioinfo.cn/iNR-PhysChem Nuclear receptors and their subfamilies 

15 NR-2L http://www.jci-bioinfo.cn/NR2L Nuclear receptors and their subfamilies 
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6. CONCLUSION AND PERSPECTIVES 

 As summarized in a review article [85], to develop a use-
ful statistical predictor, one needs to consider the following 
steps: (i) construct or select a proper benchmark dataset to 
train and test the predictor; (ii) formulate the statistical sam-
ples with an effective mathematical expression that can truly 
reflect their intrinsic correlation with the target to be pre-
dicted; (iii) introduce or develop a powerful algorithm to 
operate the prediction; (iv) properly perform cross-validation 
tests to objectively measure the performance of the predictor; 
(v) establish a user-friendly web-server for the predictor that 
is accessible to the public. Measured against these five crite-
ria, significant progresses have been achieved during the past 
decade in predicting protein classification, as reflected by the 
following facts. 
i) The quality of benchmark datasets used for training and 

testing the predictors have been remarkably improved 
from the following three angles. The first is that their cut-
off thresholds have become more stringent; the second is 
their coverage has become wider; and the third is more 
multi-label benchmark datasets have been constructed.  

ii) More important and useful informations have been incor-
porated into PseAAC to formulate the protein samples via 
various effective approaches, such as gene ontology, 
functional domain, sequence evolution, and grey model. 

iii)The algorithms for operating the prediction systems have 
become more powerful. Particularly, the algorithms for 
dealing with multi-label systems or multiplex proteins 
have been decently established that even did not exist 10 
years ago.  

iv)The metrics to measure the performance of predictors 
have been considerably developed by introducing the “ab-
solute true” rate, which is a very intuitive and easy-to-
understand measurement in studying multi-label systems. 

v) Many web servers have been established to help experi-
mental biologists easily to get their desired information 
without the need to follow the complicated mathematics.  

 Further efforts in this area should be focused on multi-
plex proteins because they may have some unique or special 
functions important for both basic research and drug devel-
opment. Actually, as indicated by a recent review [32], many 
biomedical systems belong to the multi-label systems in 
which each of their constituent molecules possesses one or 
more than one function or feature, and hence needs one or 
more than one label to indicate its attribute(s). 
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