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a b s t r a c t

Many crucial functions in life, such as heartbeat, sensory transduction and central nervous system
response, are controlled by cell signalings via various ion channels. Therefore, ion channels have become
an excellent drug target, and study of ion channel–drug interaction networks is an important topic for
drug development. However, it is both time-consuming and costly to determine whether a drug and a
protein ion channel are interacting with each other in a cellular network by means of experimental
techniques. Although some computational methods were developed in this regard based on the
knowledge of the 3D (three-dimensional) structure of protein, unfortunately their usage is quite limited
because the 3D structures for most protein ion channels are still unknown. With the avalanche of protein
sequences generated in the post-genomic age, it is highly desirable to develop the sequence-based
computational method to address this problem. To take up the challenge, we developed a new predictor
called iCDI-PseFpt, in which the protein ion-channel sample is formulated by the PseAAC (pseudo amino
acid composition) generated with the gray model theory, the drug compound by the 2D molecular
fingerprint, and the operation engine is the fuzzy K-nearest neighbor algorithm. The overall success rate
achieved by iCDI-PseFpt via the jackknife cross-validation was 87.27%, which is remarkably higher than
that by any of the existing predictors in this area. As a user-friendly web-server, iCDI-PseFpt is freely
accessible to the public at the website http://www.jci-bioinfo.cn/iCDI-PseFpt/. Furthermore, for the
convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-
server to get the desired results without the need to follow the complicated math equations presented in
the paper just for its integrity. It has not escaped our notice that the current approach can also be used to
study other drug–target interaction networks.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Ion channels represent a class of membrane spanning protein pores
that mediate the flux of ions in a variety of cell types (Green, 1999).

The pore-forming ion channel subunits are proteins. For example, the
M2 proton channel is formed by four helices (Schnell and Chou, 2008)
(Fig. 1a), while the p7 channel from Hepatitis C virus formed by six
helices (OuYang et al., 2013 ) (Fig. 1b). Ion channels mediate and
regulate crucial functions via controlling cell signaling in organ and
cellular physiology, including the heart beat, sensory transduction
and central nervous system function, and there are over 300 types of
ion channels in a living cell (Gabashvili et al., 2007). Proper function of
ion channels is crucial for all living cells. Ion channel dysfunction may
lead to a number of diseases, the so-called channelopathies, such as
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epilepsy, arrhythmia, and type II diabetes. This kind of diseases is
primarily treated with the drugs that modulate ion channels
(Kaczorowski et al., 2008). Therefore, ion channels are excellent drug
targets. Identification of drug–target interactions is an essential step
during the drug discovery process, which is actually the most
important task for the new medicine development (Knowles and
Gromo, 2003). Many efforts in this regard have been made to discover
new drugs in the past few years (Anderson, 2003; Burbidge et al.,
2001; Lipinski et al., 2001). The most common methods are molecular
docking simulations (Chou et al., 2003; Rarey et al., 1996), literature
text mining (Zhu et al., 2005), and combining chemical structure,
genomic sequence, and protein 3D (three-dimensional) structure
information (Yamanishi et al., 2008). Actually, various structure-
based drug design methods have become widely and increasingly
used for drug development (Anderson, 2003; Chou, 2004a; Greer et al.,
1994; Schames et al., 2004; Yuan et al., 2013).

However, the prerequisite for conducting the structure-based
drug design is the knowledge of the 3D structure of the target
protein. Unfortunately, the crystal or reliable 3D structures for
many drug-related proteins are often not available. It is both time-
consuming and expensive to determine their crystal structures.
Particularly, most ion channels are membrane proteins, which are
very difficult to crystallize. Although the recently developed state-
of-the-art NMR technique is a very powerful tool in determining
the 3D structures of membrane proteins and channels (see, e.g.,
(Berardi et al., 2011; Call et al., 2006; Douglas et al., 2007; OuYang
et al., 2013; Oxenoid and Chou, 2005; Schnell and Chou, 2008;
Wang et al., 2009)), it is also time-consuming and costly. With the
avalanche of protein sequence data generated in the post-genomic
age, to timely get the information of 3D structures of targeted

proteins, one of the feasible approaches is to resort to the
homology modeling (see, e.g., (Chou, 2004b; Chou, 2004c; Chou,
2004d; Chou, 2004e; Chou, 2005b; Chou et al., 1997; Chou et al.,
2000; Hillisch et al., 2004; Jorgensen, 2004)). Unfortunately, such
an approach fails to work for those targeted proteins that do not
have sufficiently high sequence similarity with any of the 3D
known protein structures in the PDB bank, an indispensable
template or condition for developing a reliable structure via the
structural bioinformatics approach (Chou, 2004a). In view of this,
it would greatly speed up the pace of drug development and save a
lot of time and money (Sirois et al., 2005) if a sequence-based
computational method can be developed in this regard.

Actually, in a pioneering work, Yamanishi et al. (2008) pro-
posed a computational method to identify the interaction between
drugs and target proteins from the integration of chemical and
genomic spaces. Two years later, He et al., (2010) also proposed a
method to do the same based on functional groups and biological
features. However, none of these methods has provided a web-
server and hence their usage is quite limited.

The present study was initiated in an attempt to develop a new
and more powerful predictor for identifying the ion channel–drug
interactions based on the sequences of protein channels and the
2D molecular fingerprints of drugs. Particularly, a user-friendly
web-server has been established that is freely accessible to the
public to maximize its usage.

According to a recent review (Chou, 2011) and demonstrated by
a series of recent publications (Chou et al., 2011; Chou et al., 2012;
Lin et al., 2011; Wang et al., 2011; Wu et al., 2012; Xiao et al.,
2011a; Xiao et al., 2011d; Xiao et al., 2011e), to establish a really
useful statistical predictor for a biomedical system, we need to

Fig. 1. Ribbon representation of the NMR structure as viewed from the side (left) and from the top (right) for (a) the M2 proton channel (Schnell and Chou, 2008), and (b) the
p7 channel from Hepatitis C virus (OuYang et al., 2013). Reproduced from Schnell and Chou (2008) and OuYang et al. (2013) with permission.
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consider the following procedures: (i) construct or select a valid
benchmark dataset to train and test the predictor; (ii) formulate
the statistical samples with an effective mathematical expression
that can truly reflect their intrinsic correlation with the attribute
to be identified; (iii) introduce or develop a powerful algorithm (or
engine) to operate the prediction; (iv) properly perform cross-
validation tests to objectively evaluate the anticipated accuracy of
the predictor; and (v) establish a user-friendly web-server for the
predictor that is accessible to the public. Below, let us describe
how to deal with these steps.

2. Materials and methods

2.1. Benchmark dataset

In this study, the benchmark dataset set S can be formulated as

S¼Sþ [ S� ð1Þ
where the positive subset Sþ consists of the interactive ion
channel–drug pairs only, while the negative subset S� contains
the non-interactive ion channel–drug pairs only, and symbol [
represents the union in the set theory. Here, the “interactive” pair
means the pair whose two counterparts are interacted with each
other in the drug–target networks as defined in the KEGG database
at http://www.kegg.jp/kegg/; while the “non-interactive” pair
means that its two counterparts are not interacted with each other
in the drug–target networks. The positive dataset Sþ contains 1372
ion channel–drug pairs, which were taken from He et al. (2010). The
negative dataset S� contains 2744 non-interactive ion channel–
drug pairs, which were derived according to the following the
procedures as done in He et al. (2010): (i) separating each of the
pairs in Sþ into single drug and ion-channel; (ii) re-coupling each
of the single drugs with each of the single ion-channels into pairs in
a way that none of them occurred in Sþ ; (iii) randomly picking the
pairs thus formed until they reached the number two times as
many as the pairs in Sþ . The 1327 interactive ion channel–drug
pairs and 2744 non-interactive ion channel–drug pairs are given in
Online Supporting Information S1.

2.2. Sample formulation

Since each of the samples in the current network system
contains a protein and a drug, a combination of the following
two approaches were adopted to represent the protein–drug pair
samples.

2.2.1. Representing ion channel protein sequences with pseudo
amino acid composition

The sequences of the protein channels involved in this study
are given in Online Supporting Information S2. Now the problem is
how to effectively represent these protein sequences for the
current study. Generally speaking, there are two kinds of
approaches to formulate protein sequences: the sequential model
and the non-sequential or discrete model (Chou and Shen, 2007).
The most typical sequential representation for a protein sample
with L residues is its entire amino acid sequence, as can be
formulated as

P¼ R1R2R3R4R5R6R7⋯RL ð2Þ
where R1 represents the 1st residue of the protein P, R2 the 2nd
residue, and so forth. A protein thus formulated can contain its most
complete information. This is an obvious advantage of the sequential
representation. To get the desired results, the sequence-similarity-
search-based tools, such as BLAST (Altschul, 1997; Wootton and
Federhen, 1993), are usually utilized to conduct the prediction.

However, this kind of approach failed to work when the query protein
did not have significant homology to proteins of known characters.
Thus, various non-sequential representation models were proposed.
The simplest non-sequential model for a protein was based on its
amino acid composition (AAC), as defined by

P¼ f 1 f 2 ⋯ f 20
h iT

ð3Þ

where f uðu¼ 1;2;⋯;20Þ are the normalized occurrence frequencies of
the 20 native amino acids (Chou, 1995b; Nakashima et al., 1986) in the
protein P, and T the transposing operator. The AAC-discrete model
was widely used for identifying various attributes of proteins. How-
ever, as can be seen from Eq. (3), all the sequence order effects were
lost by using the AAC-discrete model. This is its main shortcoming. To
avoid completely losing the sequence-order information, the pseudo
amino acid composition (Chou, 2001d; Chou, 2005a), or Chou's
PseAAC (Cao et al., 2013; Lin and Lapointe, 2013), was proposed to
replace the simple amino acid composition (AAC) for representing the
sample of a protein. Since the concept of PseAAC was proposed in
2001(Chou, 2001d), it has beenwidely used to study various attributes
of proteins, such as identifying bacterial virulent proteins (Nanni et al.,
2012), predicting supersecondary structure (Zou et al., 2011), predict-
ing protein subcellular location (Kandaswamy et al., 2010; Mei, 2012;
Zhang et al., 2008), predicting membrane protein types (Chen and Li,
2013), discriminating outer membrane proteins (Hayat and Khan,
2012), identifying antibacterial peptides (Khosravian et al., 2013),
identifying allergenic proteins (Mohabatkar et al., 2013), predicting
metalloproteinase family (Mohammad Beigi et al., 2011), predicting
protein structural class (Sahu and Panda, 2010), identifying GPCRs and
their types (Zia Ur and Khan, 2012), identifying protein quaternary
structural attributes (Sun et al., 2012), predicting protein submito-
chondria locations (Nanni and Lumini, 2008), identifying risk type of
human papillomaviruses (Esmaeili et al., 2010), identifying cyclin
proteins (Mohabatkar, 2010), predicting GABA(A) receptor proteins
(Mohabatkar et al., 2011), classifying amino acids (Georgiou et al.,
2009), predicting cysteine S-nitrosylation sites in proteins (Xu et al.,
2013), among many others (see a long list of papers cited in the
References section of Chou, (2011)). Recently, the concept of PseAAC
was further extended to represent the feature vectors of DNA and
nucleotides (Chen et al., 2013; Chen et al., 2012), as well as other
biological samples (see, e.g., (Huang et al., 2012; Li et al., 2012)).
Because it has been widely and increasingly used, recently two
powerful soft-wares, called ‘PseAAC-Builder’ (Du et al., 2012) and
‘propy’ (Cao et al., 2013), were established for generating various
special Chou's pseudo-amino acid compositions, in addition to the
web-server ‘PseAAC’ (Shen and Chou, 2008) built in 2008. According
to a recent review (Chou, 2011), the general form of PseAAC for a
protein P is formulated by

P¼ ½ψ1 ψ2 ⋯ ψu ⋯ ψΩ �T ð4Þ

where the subscript Ω is an integer, and its value as well as the
components ψuðu¼ 1;2;⋯;ΩÞ will depend on how to extract the
desired information from the amino acid sequence of P (cf. Eq. (2)).
Below, let us describe how to extract useful information from the
benchmark dataset S to define the protein samples concerned via
Eq. (4).

As is well known, a protein sequence is composed of 20
different types of native amino acids denoted by A, C, D, E, F, G,
H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y (see the Online Supporting
Information S2). First, let us represent the protein sequence by a
series of real numbers. Listed in Table 1 are the ten different kinds
of physicochemical properties usually used for identifying protein
attributes (Xiao and Chou, 2007). For the current study, however, it
was found through many preliminary tests that when the 10th
physicochemical property (i.e., the “mean polarity”) was used, the
best prediction quality was observed. This is quite consistent with
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the observations (Chou, 2004e; Schnell and Chou, 2008) that polar
amino acids play an important role in protein channels. Accord-
ingly, the 20 numerical values of the mean polarity in Table 1 were
used to encode the 20 native amino acids in a protein sequence.
Note that to ensure that each of these numerical codes was a
positive number as required by the Gray model used later, during
the encoding process, each of the mean polarity values in Table 1
was added by 1.20. Thus, for a given protein sequence with L
amino acids (cf. Eq. (2)), we can convert it into a series of L real
numbers as described by

P¼ ð r1 r2 ⋯ rL Þ ð5Þ

where r1 is the mean polarity value for the 1st amino acid residue in
the protein P, e.g., if the 1st residue is A, then we have
r1 ¼ ð�0:06þ1:20Þ ¼ 1:14; r2 is the mean polarity value for the
2nd amino acid residue plus 1.20; and so forth. Now, we can use the
gray system model to extract the useful information of P via Eq. (5)
to formulate its PseAAC. According to the gray system theory (Deng,
1989), if the information of a system investigated is fully known, it
is called a “white system”; if completely unknown, a “black
system”; if partially known, a “gray system”. The model developed
based on such a theory is called “gray model”, which is a kind of
nonlinear and dynamic model formulated by a differential equation.
The gray model is particularly useful for solving complicated
problems (Lin et al., 2013) that are lack of sufficient information,
or need to process uncertain information and reduce random effects
of acquired data. In the gray system theory, an important and
generally used model is called GM(1,1) (Deng, 1989). By following
the similar procedures as described in Lin et al. (2009), Lin et al.
(2011), Lin et al. (2012) and Xiao et al. (2008), Eq. (4) would become
a feature vector with dimensionΩ¼ 22 and each of its components
defined by

ψu ¼

f u
∑20

i ¼ 1f iþ∑2
k ¼ 1wkak

; 1rur20

wu�20au�20

∑20
i f i ¼ 1þ∑2

k ¼ 1wkak
; 21rur22

8>>><
>>>:

ð6Þ

where f u has the same meaning as Eq. (3), wk ðk¼ 1;2Þ is the
weight factor (in this study we choosew1 ¼w2 ¼ 102 to get the best
results), and a1 and a2 are given by

a1
a2

" #
¼ ðBTBÞ�1BTY ð7Þ

where

B¼

� r2

ln
r1 þ r2

r1

� � 1

� r3

ln
r1 þ r2 þ r3

r1 þ r2

� � 1

⋮ ⋮
⋮ ⋮

� rL

ln
∑L
k ¼ 1

rk

∑L�1
k ¼ 1

rk

� � 1

2
666666666666664

3
777777777777775

ð8Þ

and

Y¼

r2
r3
⋮
rL

2
6664

3
7775 ð9Þ

2.2.2. Representing drug compounds with the 2D molecular
fingerprint

Many molecular descriptors have been designed to capture the
characteristics of structural information of a drug molecule
(Filimonov et al., 1999; Xue and Bajorath, 2000). Among them,
molecular fingerprints could provide the most detailed description
of molecular structures, were often used in similarity search,
virtual screening and QSAR/QSPR research (Casanola-Martin
et al., 2010; Ewing et al., 2006; Nisius and Bajorath, 2009;
Willett, 2011). Molecular fingerprints are a way of encoding the
structure of a molecule, derived from the presence or absence of
particular substructural fragments of drugs (Nisius and Bajorath,
2009; Owen et al., 2011; Tan et al., 2008). The most common type

Table 1
The numerical values of the ten physicochemical properties of the 20 native amino acidsa.

Amino
acid

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Hydro-
phobicity

Hydro-
philicity

Side-chain
mass

pK1 (Ca-
COOH)

pK2
(NH3)

PI
(251C)

Average buried
volume

Molecular
weight

Side-chain
volume

Mean polarity

A 0.62 �0.50 15 2.35 9.87 6.11 91.50 89.09 27.5 �0.06
C 0.29 �1.00 47 1.71 10.78 5.02 117.7 121.2 44.6 1.36
D �0.90 3.00 59 1.88 9.60 2.98 124.5 133.1 40.0 �0.80
E �0.74 3.00 73 2.19 9.67 3.08 155.1 147.1 62.0 �0.77
F 1.19 22.50 91 2.58 9.24 5.91 203.4 165.2 115.5 1.27
G 0.48 0.00 1 2.34 9.60 6.06 66.40 75.07 0.0 �0.41
H �0.40 20.50 82 1.78 8.97 7.64 167.3 155.2 79.0 0.49
I 1.38 21.80 57 2.32 9.76 6.04 168.8 131.2 93.5 1.31
K �1.50 3.00 73 2.20 8.90 9.47 171.3 146.2 100.0 �1.18
L 1.06 21.80 57 2.36 9.60 6.04 167.9 131.2 93.5 1.21
M 0.64 21.30 75 2.28 9.21 5.74 170.8 149.2 94.1 1.27
N �0.78 0.20 58 2.18 9.09 10.76 135.2 132.1 58.7 �0.48
P 0.12 0.00 42 1.99 10.60 6.30 129.3 115.1 41.9 0.00
Q �0.85 0.20 72 2.17 9.13 5.65 161.1 146.2 80.7 �0.73
R �2.53 3.00 101 2.18 9.09 10.76 202.0 174.2 105 �0.84
S �0.18 0.30 31 2.21 9.15 5.68 99.10 105.1 29.3 �0.50
T �0.05 20.40 45 2.15 9.12 5.60 122.1 119.1 51.3 �0.27
V 1.08 21.50 43 2.29 9.74 6.02 141.7 117.2 71.5 1.09
W 0.81 23.40 130 2.38 9.39 5.88 237.6 204.2 145.5 0.88
Y 0.26 22.30 107 2.20 9.11 5.63 203.6 181.2 117.3 0.33

a The numerical values of the physicochemical properties can be obtained from the text biochemistry book (e.g., (Voet and Voet, 1995)) and the papers (Hopp andWoods,
1981; Tanford, 1962).
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of fingerprint is a series of binary digits (bits) that represent the
presence or absence of particular substructures in the drug
molecule concerned. Below, let us describe how to use molecular
fingerprints to represent drug compounds.

Although the number of drugs is extremely large, most of them
are small organic molecules and are composed of some fixed small
structures (Finn et al., 1998; Wallach and Lilien, 2009). The
identification of small molecules or structures can be used to
detect the target–drug interactions with positive influence (Vogt
et al., 2007). For molecular fingerprints, which are bit-string
representations of molecular structure and properties, the dimen-
sionality of encoded descriptors has been studied intensely with
the following conclusions: 2D fingerprints are powerful molecular
descriptors, by which one can successfully recognize the active
compounds even by their strings and atom numbers (Eckert and
Bajorath, 2007). Many types of properties or characters have been
proposed to represent drug molecules, including physicochemical
properties (Laurent et al., 2006), chemical graphs (Gregori-
Puigjane et al., 2011), topological indices (Ren, 2002), 3D pharma-
cophore patterns (Wang et al., 1994) and molecular fields (Tehan
et al., 2001). In this study, let us use the simple but generally
adopted 2D molecular fingerprints to represent drug molecules, as
elaborated below.

From the KEGG database at http://www.kegg.jp/kegg/, we can
get a MOL file. The latter can be further converted into a 2D
molecular fingerprint file via a software called OpenBabel (O’Boyle
et al., 2011) downloaded from the website http://openbabel.org/.
There are four types of fingerprints generated by OpenBabel: FP2,
FP3, FP4 and MACCS. Of the four, we choose to use the FP2
fingerprint format, which is a path-based fingerprint. It can
identify small molecule fragments based on all linear and ring
substructures for the molecules with the length from 1–7 atoms
(excluding the 1-atom substructures C and N) by mapping them
onto a bit-string using a hash function (somewhat similar to the
Daylight fingerprints (Butina, 1999; Gillet et al., 2003)). The drug
representation thus obtained is a 256-bit hexadecimal string, as
can be formulated by a 256-D vector given below

D¼ ½ d1 d2 ⋯ dv ⋯ d256 �T ð10Þ

where D is a drug compound in the network system concerned,
dvðv¼ 1;2;⋯;256Þ represents its v-th component, and T is the
transpose operator. For readers' convenience, the numerical values
of the 256-D vectors for the drug compounds investigated in the
current network system are given in the Online Supporting
Information S3.

2.2.3. The ion channel–drug pair representation
Now the pair between a protein ion channel P and a drug

compound D can be formulated by combing Eqs. (4) and (10), as
given by

G¼ P � w3D¼ ½ψ1 ⋯ ψ22 w3d1 ⋯ w3d256 �T ð11Þ

where G represents the ion channel–drug pair, � the orthogonal
sum, w3 the weight factor that was chosen as 1/300 in this study
to get the best results, and ψu ðu¼ 1;2;⋯;22Þ are given in Eq. (6).

2.3. Fuzzy K-nearest neighbor algorithm

The fuzzy K-Nearest Neighbor (KNN) classification method (Keller
and Hunt, 1985) is quite popular in the pattern recognition commu-
nity owing to its good performance and ease of use. It is particularly
effective in dealing with complicated biological systems, such as
identifying nuclear receptor subfamilies (Xiao et al., 2012), character-
izing the structure of fast-folding proteins (Roterman et al., 2011),
classifying G protein-coupled receptors (Xiao et al., 2011c), predicting

protein quaternary structural attributes (Xiao et al., 2011b), predict-
ing protein structural classes (Ding et al., 2007; Maggiora et al., 1996;
Shen et al., 2005; Zhang et al., 1995), identifying membrane protein
types (Shen et al., 2006), and so forth. The rationale of the fuzzy
method is based on the fact that it is impossible to define a feature
vector that can contain all the entire information of a complicated
system. Therefore, it is logically more reasonable to treat this kind of
object as a fuzzy system. Below, let us give a brief introduction
how to use the fuzzy KNN approach to identify the interactions
between the protein ion channels and the drug compounds in the
network concerned. For simplification, hereafter, let us use the word
“channel–drug pair” or just “pair” to represent “ion channel–drug
pair” unless otherwise specifically indicated.

Suppose SðNÞ ¼ fG1;G2;⋯;GNg is a set of vectors representing N
channel–drug pairs in a training set classified into two classes
fCþ ;C�g, where Cþ denotes the interactive pair class while C� the
non-interactive pair class; SnðGÞ ¼ fGn

1;G
n

2;⋯;Gn

K g �SðNÞ is the
subset of the K nearest neighbor pairs to the query pair G. Thus,
the fuzzy membership value for the query pair G in the two classes
of SðNÞ is given by Wang et al., (2011)

μþ ðGÞ ¼
∑K

j ¼ 1μ
þ ðGn

j ÞdðG;Gn

j Þ�2=ðφ�1Þ

∑K
j ¼ 1dðG;Gn

j Þ�2=ðφ�1Þ

μ�ðGÞ ¼
∑K

j ¼ 1μ
�ðGn

j ÞdðG;Gn

j Þ�2=ðφ�1Þ

∑K
j ¼ 1dðG;Gn

j Þ�2=ðφ�1Þ

8>>>>>><
>>>>>>:

ð12Þ

where K is the number of the nearest neighbors counted for the
query pair G; μþ ðGn

j Þ and μ�ðGn

j Þ, the fuzzy membership values of
the training sample Gn

j to the class Cþ and C�, respectively, as will
be further defined below; dðG;Gn

j Þ, the Euclidean distance between
G and its jth nearest pair Gn

j in the training dataset SðNÞ; φð41Þ,
the fuzzy coefficient for determining how heavily the distance is
weighted when calculating each nearest neighbor's contribution
to the membership value. Note that the parameters K and φ will
affect the computation result of Eq. (12), and they will be
optimized by a grid-search as will be described later. Also, various
other metrics can be chosen fordðG;Gn

j Þ, such as Hamming distance
(Chou and Zhang, 1995) and Mahalanobis distance (Chou, 1995a;
Mahalanobis, 1936).

The quantitative definitions for the aforementioned μþ ðGn

j Þ and
μ�ðGn

j Þ in Eq. (12) are given by

μþ ðGn

j Þ ¼
1; if Gn

j ACþ

0; otherwise

(
μ�ðGn

j Þ ¼
1; if Gn

j AC�

0; otherwise

(
ð13Þ

Substituting the results obtained by Eq. (13) into Eq. (12), it follows
that if μþ ðGÞ4μ�ðGÞ then the query pair G is an interactive
couple; otherwise, non-interactive. In other words, the outcome
can be formulated as

GA
Cþ ; if μþ ðGÞ4μ�ðGÞ
C�; otherwise

(
ð14Þ

The predictor thus established is called iCDI-PseFpt, where 'i'
means 'identify', 'CDI' means 'channel-drug interaction', and
“PseFpt” means using the PseAAC of protein sequence and finger-
print of drug. To provide an intuitive overall picture, a flowchart is
provided in Fig. 2 to show the process of how the classifier works
in identifying ion channel–drug interactions.

2.4. Criteria for performance evaluation

To provide a more intuitive and easier-to-understand method to
measure the prediction quality, here the criteria proposed in Chou
(2001a) and Chou (2001b) was adopted. According to Chou's
criteria, the rates of correct predictions for the interactive ion
channel–drug pairs in dataset Sþ and the non-interactive ion
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channel–drug pairs in dataset S� are respectively defined by (cf. Eq.
(1))

Λþ ¼ N þ �N þ
�

N þ ; for the interactive ion channel–drug pairs

Λ� ¼ N��N�
þ

N� ; for the non–interactive ion channel–drug pairs

8<
:

ð15Þ
where Nþ is the total number of the interactive ion channel–drug
pairs investigated while Nþ

� the number of the interactive ion
channel–drug pairs incorrectly predicted as the non-interactive
ion channel–drug pairs; N� the total number of the non-
interactive ion channel–drug pairs investigated while N�

þ the
number of the non-interactive ion channel–drug pairs incorrectly
predicted as the interactive ion channel–drug pairs. The overall
success prediction rate is given by Chou (2001c)

Λ¼ΛþNþ þΛ�N�

Nþ þN� ¼ 1�Nþ
� þN�

þ
Nþ þN� ð16Þ

It is obvious from Eqs. (15) and (16) that, if and only if none of the
interactive ion channel–drug pairs and the non-interactive ion
channel–drug pairs are mispredicted, i.e., Nþ

� ¼N�
þ ¼ 0 and

Λþ ¼Λ� ¼ 1, we have the overall success rate Λ¼ 1. Otherwise,
the overall success rate would be smaller than 1.

On the other hand, it is instructive to point out that the
following equation set is often used in literatures for examining
the performance quality of a predictor

Sn¼ TP
TPþFN

Sp¼ TN
TNþFP

Acc¼ TPþTN
TPþTNþFPþFN

MCC¼ ðTP�TNÞ�ðFP�FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ

p

8>>>>>><
>>>>>>:

ð17Þ

where TP represents the true positive; TN, the true negative;
FP, the false positive; FN, the false negative; Sn, the sensitivity; Sp,
the specificity; Acc, the accuracy; MCC, the Mathew's correlation
coefficient.

The relations between the symbols in Eq. (16) and those in
Eq. (17) are given by

TP¼Nþ�Nþ
�

TN¼N��N�
þ

FP¼N�
þ

FN¼Nþ
�

8>>>><
>>>>:

ð18Þ

Substituting Eq. (18) into Eq. (17) and also noting Eqs. (15) and
(16), we obtain

Sn¼Λþ ¼ 1�N þ
�

N þ

Sp¼Λ� ¼ 1�N�
þ

N�

Acc¼Λ ¼ 1�N þ
� þN�

þ
N þ þN�

MCC¼ 1�ðN þ
� =N þ þN�

þ =N�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þðN�

þ �N þ
� Þ=N þ �½1þðN þ

� �N�
þ Þ=N��

p

8>>>>>>><
>>>>>>>:

ð19Þ

Obviously, when Nþ
� ¼ 0 meaning none of the interactive ion

channel–drug pairs was mispredicted to be a non-interactive ion
channel–drug pair, we have the sensitivity Sn¼ 1; while Nþ

� ¼Nþ

meaning that all the interactive ion channel–drug pairs were
mispredicted to be the non-interactive ion channel–drug pairs,
we have the sensitivity Sn¼ 0. Likewise, when N�

þ ¼ 0 meaning
none of the non-interactive ion channel–drug pairs was mispre-
dicted, we have the specificity Sp¼ 1; while N�

þ ¼N� meaning all
the non-interactive ion channel–drug pairs were incorrectly pre-
dicted as interactive ion channel–drug pairs, we have the specifi-
city Sp¼ 0. When Nþ

� ¼N�
þ ¼ 0 meaning that none of the

interactive ion channel–drug pairs in the dataset Sþ and none of
the non-interactive ion channel–drug pairs in S� was incorrectly
predicted, we have the overall accuracy Acc¼Λ¼ 1; while
Nþ

� ¼Nþ and N�
þ ¼N� meaning that all the interactive ion chan-

nel–drug pairs in the dataset Sþ and all the non-interactive ion
channel–drug pairs in S� were mispredicted, we have the overall
accuracy Acc¼Λ¼ 0. The MCC correlation coefficient is usually
used for measuring the quality of binary (two-class) classifications.
When Nþ

� ¼N�
þ ¼ 0 meaning that none of the interactive ion

channel–drug pairs in the dataset Sþ and none of the non-
interactive ion channel–drug pairs in S� was mispredicted, we
have MCC¼ 1; when Nþ

� ¼Nþ =2 and N�
þ ¼N�=2 we have Mcc¼ 0

meaning no better than random prediction; when Nþ
� ¼Nþ and

N�
þ ¼N�we have MCC¼�1 meaning total disagreement between

prediction and observation. As we can see from the above discus-
sion, it is much more intuitive and easier-to-understand when
using Eq. (19) to examine a predictor for its sensitivity, specificity,
overall accuracy, and Mathew's correlation coefficient.

3. Results and discussion

3.1. Cross-validation

In statistical prediction, the following three cross-validation
methods are often used to examine a predictor for its effectiveness
in practical application: independent dataset test, subsampling or
K-fold (such as 5-fold, 7-fold, or 10-fold) test, and jackknife test
(Chou and Zhang, 1995). Jackknife test is also called Leave-One-Out
(LOO) test, during which each of the samples in a benchmark
dataset was singled out one-by-one and tested by the predictor
trained by the remaining samples. Among the above three cross-
validation methods, the jackknife test is deemed the least arbitrary
that can always yield a unique result for a given benchmark
dataset as elaborated in Chou and Shen (2008) and demonstrated
by Eqs. (28)–(30) in Chou (2011). Therefore, the jackknife test has
been widely recognized and increasingly used by investigators
to examine the quality of various predictors (Chou et al., 2011;

Fig. 2. A flowchart to show the operation process of the iCDI-PseFpt predictor. See
the text for further explanation.
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Chou et al., 2012; Hayat and Khan, 2012; Khosravian et al., 2013;
Mohabatkar et al., 2013; Nanni and Lumini, 2008; Sahu and Panda,
2010; Xiao and Chou, 2007). In view of this, the success rate by the
jackknife test was also used to optimize the two uncertain
parameters K and φ in Eq. (12). As shown in Fig. 3, it was a 2-D
(dimensional) grid search. The search scope for the parameter K
was within the range from 2 to 10 and its search interval was 1;
while the scope for the parameter φ was within the range from
1.1 to 2 and its search interval was 0.1. Each of the ACC values
obtained via the 2-D grid search was marked with a grid point.
When the values of the two parameters were K ¼ 4 and φ¼ 1:9,
the iCDI-PseFpt predictor reached its optimal state.

The success rates by the jackknife test in identifying the
channel–drug pairs are given in Table 2, from which we can see
that the overall success rate achieved by iCDI-PseFpt on the
benchmark dataset S was 87.27%, which is remarkably higher
than 80.78%, the rate reported by He et al. (2010).

It is anticipated that the iCDI-PseFpt predictor will become a
useful tool for both basic research and drug development in the
relevant areas, or at the very least play a complementary role to
the existing method (He et al., 2010) for which so far no web-
server whatsoever has been provided yet.

3.2. Web server and user guide

To enhance the value of its practical applications, a web-server
for iCDI-PseFpt was established at the website http://www.jci-
bioinfo.cn/iCDI-PseFpt. Moreover, for the convenience of the vast
majority of experimental scientists, here let us provide a step-by-
step guide to show how the users can easily get the desired result
by means of the web-server without the need to follow the above
mathematical equations for its development and integrity.

Step 1. Open the web-server at the site http://www.jci-bioinfo.
cn/iCDI-PseFpt and you will see the top page of the predictor on

your computer screen, as shown in Fig. 4. Click on the Read Me
button to see a brief introduction about iCDI-PseFpt predictor
and the caveat when using it.
Step 2. Either type or copy/paste the query pairs into the input
box at the center of Fig. 4. Each query pair consists of two parts:
one is for the protein sequence, and the other for the drug. The
protein sequence should be in FASTA format, while the drug in
the KEGG code. Examples for the query pairs input can be seen
by clicking on the Example button right above the input box.
Step 3. Click on the Submit button to see the predicted result. For
example, if you use the three query pairs in the Example window
as the input, after clicking the Submit button, you will see on your
screen that the “hsa:1134” channel and the “D05453” drug are an
interactive pair, and that the “hsa:10369” channel and the
“D01295” drug are also an interactive pair, but that the
“hsa:6531” channel and the “D00474” drug are not. All these
results are fully consistent with the experimental observations.
Step 4. Click on the Citation button to find the relevant paper
that documents the detailed development and algorithm of
iCDI-SeqFpt.
Step 5. Click on the Data button to download the benchmark
dataset used to train and test the iCDI-SeqFpt predictor.
Step 6. The program is also available by clicking the button of
"download" on the lower panel of Fig. 4.

Acknowledgments

The authors wish to thank the anonymous reviewer, whose
constructive comments are very helpful for strengthening the pre-
sentation of this article. This work was supported by the Grants from
the National Natural Science Foundation of China (Nos. 60961003 and
31260273), the Key Project of Chinese Ministry of Education (No.
210116), the Province National Natural Science Foundation of JiangXi
(Nos. 2010GZS0122, 20114BAB211013 and 20122BAB201020), the
Department of Education of JiangXi Province (GJJ12490), the LuoDi
plan of the Department of Education of JiangXi Province (KJLD12083),
the Jiangxi Provincial Foreign Scientific and Technological Cooperation
Project (No. 20120BDH80023), and the JiangXi Provincial Foundation
for Leaders of Disciplines in Science (20113BCB22008). The funders
had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2013.08.013.

Fig. 3. A 3D graph to show how to optimize the two parameters K and φ for the
iCDI-PseFpt predictor.

Fig. 4. A semi-screenshot to show the top page of the iCDI-SeqFpt web-server. Its
web-site address is at http://www.jci-bioinfo.cn/iCDI-PseFpt.

Table 2
The jackknife success rates obtained iCDI-PseFpt in identifying ion channel–drug
pairs and non-ion channel drug pairs for the benchmark dataset S (cf. Online
Supporting Information S1).

Performance evaluation
(cf. Eq. (17) or (19))

iCDI-PseFpta (%) Method by
He et al.b (%)

Sn or Λþ 1184=1372¼ 86:30 N/A
Sp or Λ� 2408=2744¼ 87:76 N/A
Acc or Λ 3592=4116¼ 87:27 80.78
MCC 72:33% N/A

a The parameters used: w1 ¼w2 ¼ 102 (cf. Eq. (6)) and K ¼ 4 and φ¼ 1:9 (cf. Eq.
(12)).

b See Ref. He et al. (2010).
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