
CHAPTER III
CONDITIONAL PROBABILITY



CONDITIONAL PROBABILITY

• The probability that event A, given that event
B occurred is called the conditional probability
of A given B and denoted by P(A|B)

• Note that the occurrence of event B precedes
the occurrence of event A.
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CONDITIONAL PROBABILITY

• The conditional probability of B, given A is

• It follows that

• This is called the multiplication rule in
probability
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CONDITIONAL PROBABILITY

• Multiplication Rule for 3 events states

• In general, we have
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CONDITIONAL PROBABILITY

Example (1) Let A, B be defined on S such that:

Find P(A|B), P(B|A).

Solution: 

P(A∩ B) = 0.38 + 0.45 – 0.65 = 0.18

P(A | B) = 0.18 / 0.45 = 0.40

P(B | A) = 0.18 / 0.38 = 0.47 

Statistics Department - Faculty of Science 
King Abdulaziz University

5

( ) 0.38, ( ) 0.45, ( ) 0.65P A P B P A B   



CONDITIONAL PROBABILITY 

Example (2) 

Two cards are drawn at random and in 
succession from an ordinary deck of 52 
playing cards. Find the probability that both 
cards will be Hearts, if the drawing was:

(1) with replacement

(2) without replacement
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CONDITIONAL PROBABILITY 

Solution:

Let Hi = event i th card is Heart, i = 1, 2.

Required Probability = P(H1 ∩H2) 

= P(H1 ) P(H2 | H1 )

(1) Req. Prob. = (13/52) x (13/52) = 0.063

(2) Req. Prob. = (13/52) x (12/51) = 0.059
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CONDITIONAL PROBABILITY 

Example (3) 

Three cards are drawn at random and in 
succession from an ordinary deck of 52 
playing cards. Find the probability that all 
cards will be Hearts, if the drawing was:

(1) with replacement

(2) without replacement
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CONDITIONAL PROBABILITY 

Solution:

Let Hi = event i th card is Heart, i = 1, 2, 3.

Required Probability = P(H1 ∩ H2 ∩ H3 ) 

= P(H1 ) P(H2 | H1 ) P(H3 | H1 ∩ H2)

(1) Req. Prob. = (13/52)3 = 0.016

(2) Req. Prob. = (13/52) x (12/51) x (11/50)

= 0.013
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CONDITIONAL PROBABILITY 

Independence of events

Two events A &B are said to be independent if

P(A|B) = P(A)

Or, equivalently

P(B|A) = P(B)

Consequently, for independent events:

P(A∩B) = P(A) P(B)  
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CONDITIONAL PROBABILITY 

Example (4)

A large city has two fire-engines operating 
independently. The probability that a specific 
engine is available when needed is 0.85. Find:

(1) P(an engine is available when needed)

(2) P(neither engine is available when needed)

Solution: Let Ei be the event “ ith engine is 
available when needed”, i = 1, 2.  
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CONDITIONAL PROBABILITY 

P(E1 ) = P(E2 ) = 0.85, 

P(E1 ∩ E2 ) = P( E1 )P(E2 ) = 0.85 x 0.85 = 0.7225

(1) Req. Prob. = P(E1 U E2 )

= P(E1 ) + P(E2 ) – P(E1 ∩ E2 )

= 0.85 + 0.85 – 0.7225 = 0.9775

(2) Req. Prob. = P[(E1 U E2 )c ] = 1 – P(E1 U E2 )

= 1 – 0.9775 = 0.0225
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CONDITIONAL PROBABILITY 

A, B, and C are said to be independent if:

(1) P(A∩B) = P(A) P(B)

(2) P(A∩C) = P(A) P(C)

(3) P(B∩C) = P(B) P(C)

(4) P(A∩B∩C) = P(A) P(B) P(C).

Remark: If conditions (1) – (3) are satisfied, we 
say that A, B, and C are pairwise independent
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CONDITIONAL PROBABILITY 

Example (5)

A large city has 3 fire-engines operating 
independently. The probability that a specific 
engine is available when needed is 0.85. Find:

(1) P(an engine is available when needed)

(2) P(neither engine is available when needed)

Solution: Let Ei be the event “ ith engine is 
available when needed”, i = 1, 2, 3.
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CONDITIONAL PROBABILITY 

P(E1 ) = P(E2 ) = P(E3 ) = 0.85, 

P(E1 ∩ E2 ) = P( E1 )P(E2 ) = 0.85 x 0.85 = 0.7225

P(E1 ∩ E3 ) = P( E1 )P(E3 ) = 0.85 x 0.85 = 0.7225

P(E2 ∩ E3 ) = P( E2 )P(E3 ) = 0.85 x 0.85 = 0.7225

P(E1 ∩ E2 ∩ E3) = P( E1 )P(E2 ) P(E3 )

= 0.85 x 0.85 x 0.85 

= 0.6141
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CONDITIONAL PROBABILITY

(1) Req. Prob. = P(E1 U E2 U E3 )

= 3 x (0.85) – 3 x (0.7225) + 0.6141 
= 0.9966

(2) Req. Prob. = P[(E1 U E2 U E3 )c ] 

= 1 – P(E1 U E2 U E3)

= 1 – 0.9966 = 0.0034

Statistics Department - Faculty of Science 
King Abdulaziz University

16



CONDITIONAL PROBABILITY 

Partition of the Sample Space

The collection A1 , A2 , …, An is said to be a 
partition of S if:

(1) They are mutually exclusive

(2) Their union equals S. 
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CONDITIONAL PROBABILITY 

The Law of Total Probability

Let A1 , A2 , …, An be a partition of S. Let D be an 
event defined on S. Then
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CONDITIONAL PROBABILITY 
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Bayes’ Rule

Let A1 , A2 , …, An be a partition of S. Let D be an 
event, defined on S. Then
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CONDITIONAL PROBABILITY 

Example (6) The distribution of colored balls in 
two boxes is as follows:

A ball is selected at random from Box I and put 
unseen into Box II. Then, a ball is selected at 
random from Box II.  
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I 4 6 5

II 7 8 4



CONDITIONAL PROBABILITY 

It is required to find:

1. P(both selected balls have the same color)

Solution:

Req. Prob. = P(W1∩W2) + P(R1∩R2) + P(B1∩B2)

= P(W1) P(W2|W1) + P(R1) P(R2|R1) + 
P(B1) P(B2|B1)

= 6/15 x 9/20 + 4/15 x 8/20 + 5/15 x 5/20

= 0.37 
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CONDITIONAL PROBABILITY 

2. P(both selected balls have different colors)

= 1 – P(both have the same color) = 0.63.

3. P(the second ball is white) = P(W2)

= P(W2 | W1)P(W1) + P(W2 | R1)P(R1) + 
P(W2 | B1)P(B1)

= 9/20 x 6/15 + 8/20 x 4/15 + 8/20 x 5/15

= 126/300 = 0.42
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CONDITIONAL PROBABILITY 

3. P(first ball is White, given the second was
White) =
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CONDITIONAL PROBABILITY

Example (7) Three machines produce respectively 0.35,
0.37, and 0.28 of the total production of a given item
at a certain factory. The probabilities of producing a
defective item on these machines are 0.07, 0.05, and
0.08 respectively. An item is selected at random. Find
the probability that the selected item is defective.

Solution 

Req. = 0.35 x 0.07 + 0.37 x 0.05 + 0.28 x 0.08 = 0.0654
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CONDITIONAL PROBABILITY 

Example (8) Three machines produce respectively
0.35, 0.37, and 0.28 of the total production of a
given item in a certain factory. The probabilities
of producing a defective item on these machines
are 0.07, 0.05, and 0.08 respectively. An item is
selected at random and found defective. Find the
probability that the selected defective item is
produced by the second machine.

• Req. = [0.37 x 0.05] / [0.35 x 0.07 + 0.37 x 0.05 +
0.28 x 0.08] = 0.283
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CONDITIONAL PROBABILITY

Example (9) Three machines produce respectively
0.35, 0.37, and 0.28 of the total production of a
given item in a certain factory. The probabilities
of producing a defective item on these machines
are 0.07, 0.05, and 0.08 respectively. An item is
selected at random and found non-defective. Find
the probability that the selected non-defective
item is produced by the second machine.

• Req. = [0.37 x {1 – 0.05}] / [1 – {0.35 x 0.07 + 0.37
x 0.05 + 0.28 x 0.08}] = 0.376
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CONDITIONAL PROBABILITY

Example (10) The following circuit operates only if there
is a path of functional devices from left to right. The
probability that each device functions is shown on the
graph.

Assume that devices fail independently. What is the 
probability that the circuit operates?

• Required = 0.8 x 0.9 = 0.72
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CONDITIONAL PROBABILITY

Example (11) consider the following system

Assume that devices fail independently. What 
is the probability that the circuit operates?

• Required = 0.754
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