CHAPTER III CONDITIONAL PROBABILITY

CONDITIONAL PROBABILITY

- The probability that event A, given that event B occurred is called the conditional probability of A given B and denoted by $P(A \mid B)$

$$
P(A \mid B)=\frac{P(A \cap B}{P(B)}, P(B)>0
$$

- Note that the occurrence of event B precedes the occurrence of event A.

CONDITIONAL PROBABILITY

- The conditional probability of B, given A is

$$
P(B \mid A)=\frac{P(A \cap B}{P(A)}, P(A)>0
$$

- It follows that

$$
P(A \cap B)=P(A) P(B \mid A)=P(B) P(A \mid B)
$$

- This is called the multiplication rule in probability

CONDITIONAL PROBABILITY

- Multiplication Rule for 3 events states

$$
P(A \cap B \cap C)=P(A) P(B \mid A) P(C \mid A \cap B)
$$

- In general, we have

$$
P\left(\bigcap_{i=1}^{n} A_{i}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right) \ldots P\left(A_{n} \mid \bigcap_{i=1}^{n-1} A_{i}\right)
$$

CONDITIONAL PROBABILITY

Example (1) Let A, B be defined on S such that:

$$
P(A)=0.38, P(B)=0.45, P(A \cup B)=0.65
$$

Find $P(A \mid B), P(B \mid A)$.

Solution:

$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.38+0.45-0.65=0.18$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=0.18 / 0.45=0.40$
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=0.18 / 0.38=0.47$

CONDITIONAL PROBABILITY

Example (2)

Two cards are drawn at random and in succession from an ordinary deck of 52 playing cards. Find the probability that both cards will be Hearts, if the drawing was:
(1) with replacement
(2) without replacement

CONDITIONAL PROBABILITY

Solution:

Let $\mathrm{H}_{\mathrm{i}}=$ event $\mathrm{i}^{\text {th }}$ card is Heart, $\mathrm{i}=1,2$.
Required Probability $=P\left(\mathrm{H}_{1} \cap \mathrm{H}_{2}\right)$

$$
=P\left(H_{1}\right) P\left(H_{2} \mid H_{1}\right)
$$

(1) Req. Prob. $=(13 / 52) \times(13 / 52)=0.063$
(2) Req. Prob. $=(13 / 52) \times(12 / 51)=0.059$

CONDITIONAL PROBABILITY

Example (3)

Three cards are drawn at random and in succession from an ordinary deck of 52 playing cards. Find the probability that all cards will be Hearts, if the drawing was:
(1) with replacement
(2) without replacement

CONDITIONAL PROBABILITY

Solution:

Let $\mathrm{H}_{\mathrm{i}}=$ event $\mathrm{i}^{\text {th }}$ card is Heart, $\mathrm{i}=1,2,3$.
Required Probability $=P\left(\mathrm{H}_{1} \cap \mathrm{H}_{2} \cap \mathrm{H}_{3}\right)$

$$
=P\left(H_{1}\right) P\left(H_{2} \mid H_{1}\right) P\left(H_{3} \mid H_{1} \cap H_{2}\right)
$$

(1) Req. Prob. $=(13 / 52)^{3}=0.016$
(2) Req. Prob. $=(13 / 52) \times(12 / 51) \times(11 / 50)$

$$
=0.013
$$

CONDITIONAL PROBABILITY

Independence of events

Two events $A \& B$ are said to be independent if

$$
P(A \mid B)=P(A)
$$

Or, equivalently

$$
P(B \mid A)=P(B)
$$

Consequently, for independent events:

$$
P(A \cap B)=P(A) P(B)
$$

CONDITIONAL PROBABILITY

Example (4)

A large city has two fire-engines operating independently. The probability that a specific engine is available when needed is 0.85 . Find:
(1) P(an engine is available when needed)
(2) P (neither engine is available when needed)

Solution: Let E_{i} be the event " i th engine is available when needed", $\mathrm{i}=1,2$.

CONDITIONAL PROBABILITY

$P\left(E_{1}\right)=P\left(E_{2}\right)=0.85$,
$P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) P\left(E_{2}\right)=0.85 \times 0.85=0.7225$
(1) Req. Prob. $=P\left(E_{1} \cup E_{2}\right)$

$$
\begin{aligned}
& =P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right) \\
& =0.85+0.85-0.7225=0.9775
\end{aligned}
$$

(2) Req. Prob. $=P\left[\left(E_{1} \cup E_{2}\right)^{c}\right]=1-P\left(E_{1} \cup E_{2}\right)$

$$
=1-0.9775=0.0225
$$

CONDITIONAL PROBABILITY

A, B, and C are said to be independent if:
(1) $P(A \cap B)=P(A) P(B)$
(2) $P(A \cap C)=P(A) P(C)$
(3) $P(B \cap C)=P(B) P(C)$
(4) $P(A \cap B \cap C)=P(A) P(B) P(C)$.

Remark: If conditions (1) - (3) are satisfied, we say that A, B, and C are pairwise independent

CONDITIONAL PROBABILITY

Example (5)

A large city has 3 fire-engines operating independently. The probability that a specific engine is available when needed is 0.85 . Find:
(1) P(an engine is available when needed)
(2) P (neither engine is available when needed)

Solution: Let E_{i} be the event " i th engine is available when needed", $\mathrm{i}=1,2,3$.

CONDITIONAL PROBABILITY

$$
\begin{aligned}
& P\left(E_{1}\right)=P\left(E_{2}\right)=P\left(E_{3}\right)=0.85, \\
& P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) P\left(E_{2}\right)=0.85 \times 0.85=0.7225 \\
& P\left(E_{1} \cap E_{3}\right)=P\left(E_{1}\right) P\left(E_{3}\right)=0.85 \times 0.85=0.7225 \\
& P\left(E_{2} \cap E_{3}\right)=P\left(E_{2}\right) P\left(E_{3}\right)=0.85 \times 0.85=0.7225 \\
& P\left(E_{1} \cap E_{2} \cap E_{3}\right)=P\left(E_{1}\right) P\left(E_{2}\right) P\left(E_{3}\right) \\
& \quad=0.85 \times 0.85 \times 0.85 \\
& \quad=0.6141
\end{aligned}
$$

CONDITIONAL PROBABILITY

(1) Req. Prob. $=P\left(E_{1} \cup E_{2} \cup E_{3}\right)$

$$
\begin{aligned}
& =3 \times(0.85)-3 \times(0.7225)+0.6141 \\
& =0.9966
\end{aligned}
$$

(2) Req. Prob. $=P\left[\left(E_{1} \cup E_{2} \cup E_{3}\right)^{c}\right]$

$$
\begin{aligned}
& =1-P\left(E_{1} \cup E_{2} \cup E_{3}\right) \\
& =1-0.9966=0.0034
\end{aligned}
$$

CONDITIONAL PROBABILITY

Partition of the Sample Space

The collection $A_{1}, A_{2}, \ldots, A_{n}$ is said to be a partition of S if:
(1) They are mutually exclusive

$$
A_{i} \cap A_{j}=\Phi, \forall i \neq j
$$

(2) Their union equals S.

$$
A_{1} \cup A_{2} \cup \ldots \cup A_{n}=S
$$

CONDITIONAL PROBABILITY

The Law of Total Probability

Let $A_{1}, A_{2}, \ldots, A_{n}$ be a partition of S. Let D be an event defined on S. Then

$$
P(D)=\sum_{i=1}^{n} P\left(A_{i}\right) P\left(D \mid A_{i}\right)
$$

CONDITIONAL PROBABILITY

Bayes' Rule

Let $A_{1}, A_{2}, \ldots, A_{n}$ be a partition of S. Let D be an event, defined on S. Then

$$
P\left(A_{k} \mid D\right)=\frac{P\left(D \mid A_{k}\right) P\left(A_{k}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(D \mid A_{i}\right)}, k=1,2, \ldots, n
$$

CONDITIONAL PROBABILITY

Example (6) The distribution of colored balls in two boxes is as follows:

Box	Red	White	Black
I	4	6	5
II	7	8	4

A ball is selected at random from Box I and put unseen into Box II. Then, a ball is selected at random from Box II.

CONDITIONAL PROBABILITY

It is required to find:

1. P (both selected balls have the same color)

Solution:
Req. Prob. $=P\left(W_{1} \cap W_{2}\right)+P\left(R_{1} \cap R_{2}\right)+P\left(B_{1} \cap B_{2}\right)$
$=P\left(W_{1}\right) P\left(W_{2} \mid W_{1}\right)+P\left(R_{1}\right) P\left(R_{2} \mid R_{1}\right)+$ $\mathrm{P}\left(\mathrm{B}_{1}\right) \mathrm{P}\left(\mathrm{B}_{2} \mid \mathrm{B}_{1}\right)$
$=6 / 15 \times 9 / 20+4 / 15 \times 8 / 20+5 / 15 \times 5 / 20$
$=0.37$

CONDITIONAL PROBABILITY

2. P(both selected balls have different colors)
$=1-\mathrm{P}$ (both have the same color) $=0.63$.
3. P (the second ball is white) $=P\left(W_{2}\right)$

$$
\begin{aligned}
= & P\left(W_{2} \mid W_{1}\right) P\left(W_{1}\right)+P\left(W_{2} \mid R_{1}\right) P\left(R_{1}\right)+ \\
& P\left(W_{2} \mid B_{1}\right) P\left(B_{1}\right) \\
= & 9 / 20 \times 6 / 15+8 / 20 \times 4 / 15+8 / 20 \times 5 / 15 \\
= & 126 / 300=0.42
\end{aligned}
$$

CONDITIONAL PROBABILITY

3. P (first ball is White, given the second was White) =

$$
P\left(W_{1} \mid W_{2}\right)=\frac{P\left(W_{2} \mid W_{1}\right) P\left(W_{1}\right)}{P\left(W_{2}\right)}=\frac{(9 / 20)(6 / 15)}{0.42}=0.429
$$

CONDITIONAL PROBABILITY

Example (7) Three machines produce respectively 0.35 , 0.37 , and 0.28 of the total production of a given item at a certain factory. The probabilities of producing a defective item on these machines are 0.07, 0.05, and 0.08 respectively. An item is selected at random. Find the probability that the selected item is defective.

Solution

Req. $=0.35 \times 0.07+0.37 \times 0.05+0.28 \times 0.08=0.0654$

CONDITIONAL PROBABILITY

Example (8) Three machines produce respectively $0.35,0.37$, and 0.28 of the total production of a given item in a certain factory. The probabilities of producing a defective item on these machines are $0.07,0.05$, and 0.08 respectively. An item is selected at random and found defective. Find the probability that the selected defective item is produced by the second machine.

- Req. $=[0.37 \times 0.05] /[0.35 \times 0.07+0.37 \times 0.05+$ $0.28 \times 0.08]=0.283$

CONDITIONAL PROBABILITY

Example (9) Three machines produce respectively $0.35,0.37$, and 0.28 of the total production of a given item in a certain factory. The probabilities of producing a defective item on these machines are $0.07,0.05$, and 0.08 respectively. An item is selected at random and found non-defective. Find the probability that the selected non-defective item is produced by the second machine.

- Req. $=[0.37 \times\{1-0.05\}] /[1-\{0.35 \times 0.07+0.37$ $x 0.05+0.28 \times 0.08\}]=0.376$

CONDITIONAL PROBABILITY

Example (10) The following circuit operates only if there is a path of functional devices from left to right. The probability that each device functions is shown on the graph.

Assume that devices fail independently. What is the probability that the circuit operates?

- Required $=0.8 \times 0.9=0.72$

CONDITIONAL PROBABILITY

Example (11) consider the following system

Assume that devices fail independently. What is the probability that the circuit operates?

- Required $=0.754$

