King Abdulaziz University Faculty of Science Department of Statistics

STAT 210
 Theory of Probability

COMPUTER SCIENCE STUDENTS

CHAPTER II

 Introduction to Probability
Introduction to Probability

- Random Experiment:

It is an experiment whose possible outcomes
are known, but cannot be predicted with certainty.

- Examples :

Example 1. Tossing a coin once
Example 2. Rolling a die once
Example 3. Drawing a card from a deck

Introduction to Probability

- Sample Space:

It is a set whose elements represent all possible outcomes of a random experiment. It is usually denoted by S.

- Examples :

In Example (1): $S=\{$ Head, Tail $\}=\{H, T\}$
In Example (2): $S=\{1,2,3,4,5,6\}$
In Example (3): $S=\{1,2, \ldots, 10$, Jack, Queen, King $\}$

Introduction to Probability

- More Examples :

Example (4): Tossing a coin twice

$$
\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\} .
$$

Example (5): Rolling a die twice

$$
S=\{(a, b) \mid a=1,2, \ldots 6 \text { and } b=1,2, \ldots 6\} .
$$

Example (6): Tossing a coin 3 times
$S=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$.

Introduction to Probability

- Event :

It is a subset of the sample space. It is usually denoted by A, B, \ldots.

Example (7). When rolling a die once, list the elements of the events:
$A=$ outcome is an even number $=\{2,4,6\}$
$B=$ outcome is an odd number $=\{1,3,5\}$
$C=$ outcome is divisible by $3=\{3,6\}$

Introduction to Probability

Example (8): when rolling a die twice, list the elements of the events:

A = getting a sum of 7
$=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$
$B=$ getting a sum of at least 9
$=\{(3,6),(4,5),(5,4),(6,3),(4,6),(5,5),(6,4)$,
$(5,6),(6,5),(6,6)\}$

Introduction to Probability

C = getting a sum of at most 5
$=\{(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)$,
$(1,4),(2,3),(3,2),(4,1)\}$

Introduction to Probability

- Example (9): When tossing a coin 3 times
$\mathrm{A}=$ getting one Head $=\{\mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}\}$
$B=$ getting 2 Heads $=\{H H T, H T H, T H H\}$
$\mathrm{C}=$ getting at least 1 Head
$=\{\mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HHH}\}$
D = getting at most 2 Head
$=\{$ TTT, HTT, THT, TTH, HHT, HTH, THH $\}$

Introduction to Probability

Logical Dictionary

Symbol	Set Theory	Probability Theory
A	set	event
A^{c}	Compliment of A	Event "not A"
ϕ	Empty set	Impossible event
S	Universal set	Sample space
A U B	Union of A and B	Event A or event B
A \cap B	Intersection of A and B	Both events A and B
A - B	Difference between A and B	Event A, but not B
A $\cap B=\phi$	Disjoint sets	Mutually exclusive events

Introduction to Probability

- Definition of Probability of an event
(1) Subjective Approach

It depends on experience and the amount of available information
(2) Empirical Approach

It depends on repeating the experiment " n " times and noting the number " m " of occurrence of the event A, and taking
$P(A)=m / n$ for sufficiently large n.

Introduction to Probability

(3) Classical Approach

It depends on assuming that all outcomes are equal y likely. In this case
where

$$
P(A)=\frac{n(A}{n(S)}
$$

$n(A)=$ number of sample points in A
$n(S)=$ number of sample points in S

Introduction to Probability

Mathematical (Axiomatic) Definition

It depends on Axioms of Probability:
(i) Axiom 1: For every event A in $\mathrm{S}: \mathrm{P}(\mathrm{A}) \geq 0$
(ii) Axiom 2: $\mathrm{P}(\mathrm{S})=1$
(iii) Axiom 3: For mutually exclusive events A and B in S :

$$
P(A \cup B)=P(A)+P(B)
$$

Introduction to Probability

Some Basic Theorems

(1) For any event A in S :

$$
0 \leq P(A) \leq 1
$$

(2) For any event A in S :

$$
P(A)+P\left(A^{c}\right)=1
$$

(3) For any events A, B in S :

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Introduction to Probability

Some Basic Theorems

(continued)

(4) For any events A , B in S:

$$
\mathrm{P}(\mathrm{~A}-\mathrm{B})=\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})
$$

(5) For events A, B in such that A subset of B:

$$
\mathrm{P}(\mathrm{~A}) \leq \mathrm{P}(\mathrm{~B})
$$

Introduction to Probability

Some Basic Theorems

(continued)

(6) For any events A, B, C in S :

$$
\begin{aligned}
P(A \cup B \cup C)= & P(A)+P(B)+P(C) \\
& -P(A \cap B)-P(A \cap C)-P(B \cap C) \\
& +P(A \cap B \cap C)
\end{aligned}
$$

Introduction to Probability

Remark:

For mutually exclusively events A, B, and C in S :
(1) $P(A \cup B)=P(A)+P(B)$
(2) $P(A \cup B \cup C)=P(A)+P(B)+P(C)$

- In general, for mutually exclusively events A_{1}, A_{2}, \ldots, A_{n} defined on S

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right.
$$

Introduction to Probability

Examples Based on Classical Definition

- Example (10): When tossing a coin once $P($ Head $)=1 / 2$
$P($ Tail $)=1 / 2$
Example (11): When tossing a coin twice $P(2$ Heads $)=1 / 4, P(2$ Tails $)=1 / 4, P(1$ Head $)=1 / 2$
P (at least 1 Head) $=3 / 4$

Introduction to Probability

- Example (12): When tossing a coin 3 times
$P(1$ Head $)=3 / 8$,
$\mathrm{P}(2$ Heads $)=3 / 8$,
$P(3$ Heads $)=1 / 8$,
$P($ no Heads $)=1 / 8$

Introduction to Probability

- Example (13): When rolling a die once $P($ face 1$)=\ldots=P($ face 6$)=1 / 6=0.167$
$P($ even number $)=3 / 6=0.5$,
$P($ odd number $)=3 / 6=0.5$,
$P($ a number divisible by 3$)=2 / 6=0.333$,
$\mathrm{P}($ a prime number $)=3 / 6=0.5$

Introduction to Probability

- Example (14): Rolling two dice once
$P($ odd number on the first die) $=18 / 36=0.5$
$P($ odd number on second die) $=18 / 36=0.5$
P (odd number on both dice) $=9 / 36=0.25$
$P($ getting a sum of 7$)=6 / 36=0.167$
$\mathrm{P}($ equal numbers on both dice $)=6 / 36=0.167$

Introduction to Probability

- Example (15): Let A and be defined on the same sample space S such that:

$$
P(A)=0.3, P(B)=0.25, P(A \cap B)=0.07
$$

- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
\begin{aligned}
& =0.3+0.25-0.07 \\
& =0.48
\end{aligned}
$$

Introduction to Probability

Example (16): Let A, B, C be defined on the same sample space S such that $P(A)=0.3, P(B)=0.25, P(C)=0.40, P(A \cap B)=0.07$, $P(A \cap C)=0.09, P(B \cap C)=0.08, P(A \cap B \cap C)=0.03$
(i) $\mathrm{P}($ at least 1 event will occur $)=\mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})$

$$
\begin{aligned}
= & P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)- \\
& P(B \cap C)+P(A \cap B \cap C)=0.74
\end{aligned}
$$

Introduction to Probability

$$
\begin{aligned}
& P(\text { only } A \text { will occur })=P\left(A \cap B^{c} \cap C^{c}\right)=0.17 \\
& P(\text { only } B \text { will occur })=P\left(A^{c} \cap B \cap C^{c}\right)=0.13 \\
& P(\text { only } C \text { will occur })=P\left(A^{c} \cap B^{c} \cap C\right)=0.26
\end{aligned}
$$

(ii) P (only 1 event will occur)

$$
\begin{aligned}
& =P(\text { only } A)+P(\text { only } B)+P(\text { only } C) \\
& =0.17+0.13+0.26 \\
& =0.56
\end{aligned}
$$

Introduction to Probability

$P($ only A and B will occur $)=P\left(A \cap B \cap C^{c}\right)=0.04$ $P($ only A and C will occur $)=P\left(A \cap B^{c} \cap C\right)=0.06$ $P($ only B and C will occur $)=P\left(A^{c} \cap B \cap C\right)=0.05$
(iii) P (only 2 events will occur)

$$
\begin{aligned}
& =P\left(A \cap B \cap C^{c}\right)+P\left(A \cap B^{c} \cap C\right)+P\left(A^{c} \cap B \cap C\right) \\
& =0.15
\end{aligned}
$$

Introduction to Probability

(iii) P (at least 2 events will occur)

$$
\begin{aligned}
& =P\left(A \cap B \cap C^{c}\right)+P\left(A \cap B^{c} \cap C\right)+P\left(A^{c} \cap B \cap C\right)+ \\
& P(A \cap B \cap C)=0.18
\end{aligned}
$$

(iv) $\mathrm{P}\left(\right.$ no event will occur) $=\mathrm{P}\left[(\mathrm{A} \cup B \cup C)^{c}\right]$

$$
\begin{aligned}
& =1-P(A \cup B \cup C) \\
& =0.26
\end{aligned}
$$

Introduction to Probability

$$
\begin{aligned}
P[A \cap(B \cup C)] & =P[(A \cap B) \cup(A \cap C)] \\
& =P(A \cap B)+P(A \cap C)-P(A \cap B \cap C)
\end{aligned}
$$

(v) $P[A \cap(B \cup C)]=0.07+0.09-0.03=0.13$

$$
P[A \cup(B \cap C)]=P(A)+P(B \cap C)-P(A \cap B \cap C)
$$

(vi) $P[A \cup(B \cap C)]=0.3+0.08-0.03=0.35$

