KING ABDULAZIZ UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF STATISTICS

STAT 210 Theory of Probability

COMPUTER SCIENCE STUDENTS

CHAPTER II Introduction to Probability

• Random Experiment :

It is an experiment whose possible outcomes are known, but cannot be predicted with certainty.

• Examples :

<u>Example</u> 1. Tossing a coin once <u>Example</u> 2. Rolling a die once <u>Example</u> 3. Drawing a card from a deck

• <u>Sample Space</u>:

It is a set whose elements represent all possible outcomes of a random experiment. It is usually denoted by S.

• Examples :

<u>In Example</u> (1): S = {Head, Tail} = {H, T} <u>In Example</u> (2): S = {1, 2, 3, 4, 5, 6} <u>In Example (</u>3): S = {1, 2, ..., 10, Jack, Queen, King}

• More Examples :

Example (4): Tossing a coin twice

 $S = \{HH, HT, TH, TT\}.$

Example (5): Rolling a die twice

Example (6): Tossing a coin 3 times

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.

• <u>Event</u> :

It is a subset of the sample space. It is usually denoted by A, B,

Example (7). When rolling a die once, list the elements of the events:

- A = outcome is an even number = $\{2, 4, 6\}$
- B = outcome is an odd number = {1, 3, 5}

C = outcome is divisible by $3 = \{3, 6\}$

- **Example** (8): when rolling a die twice, list the elements of the events:
- A = getting a sum of 7
 - $= \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}$
- B = getting a sum of at least 9
 - $= \{(3, 6), (4, 5), (5, 4), (6, 3), (4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6)\}$

C = getting a sum of at most 5

$= \{(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1)\}$

- **Example** (9): When tossing a coin 3 times
 - A = getting one Head = {HTT, THT, TTH}
 - B = getting 2 Heads = {HHT, HTH, THH}
 - C = getting at least 1 Head
 - = {HTT, THT, TTH, HHT, HTH, THH, HHH}
 - D = getting at most 2 Head
 - = {TTT, HTT, THT, TTH, HHT, HTH, THH}

Logical Dictionary

Symbol	Set Theory	Probability Theory
А	set	event
Ac	Compliment of A	Event "not A"
φ	Empty set	Impossible event
S	Universal set	Sample space
A U B	Union of A and B	Event A or event B
$A\cap B$	Intersection of A and B	Both events A and B
А — В	Difference between A and B	Event A, but not B
$A \cap B = \Phi$	Disjoint sets	Mutually exclusive events

• <u>Definition of Probability of an event</u>

(1) Subjective Approach

It depends on experience and the amount of available information

(2) Empirical Approach

It depends on repeating the experiment "n" times and noting the number "m" of occurrence of the event A, and taking

P(A) = m / n for sufficiently large n.

(3) Classical Approach

It depends on assuming that all outcomes are equal y likely. In this case

$$P(A) = \frac{n(A)}{n(S)}$$

where

n(A) = number of sample points in A n(S) = number of sample points in S

Mathematical (Axiomatic) Definition

It depends on Axioms of Probability:

- (i) **<u>Axiom 1</u>**: For every event A in S: $P(A) \ge 0$
- (ii) <u>Axiom 2</u>: P(S) = 1
- (iii) <u>Axiom 3</u>: For mutually exclusive events A and B in S:

$P(A \cup B) = P(A) + P(B)$

Some Basic Theorems

```
(1) For any event A in S:

0 \le P(A) \le 1

(2) For any event A in S:

P(A) + P(A^c) = 1

(3) For any events A, B in S:
```

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Some Basic Theorems

(continued)

(4) For any events A, B in S: $P(A - B) = P(A) - P(A \cap B)$

(5) For events A, B in such that A subset of B: $P(A) \le P(B)$

Some Basic Theorems

(continued)

(6) For any events A, B, C in S:

 $P(A \cup B \cup C) = P(A) + P(B) + P(C)$ $- P(A \cap B) - P(A \cap C) - P(B \cap C)$ $+ P(A \cap B \cap C)$

Remark:

For mutually exclusively events A, B, and C in S: (1) $P(A \cup B) = P(A) + P(B)$ (2) $P(A \cup B \cup C) = P(A) + P(B) + P(C)$

• In general, for mutually exclusively events A_1 , A_2 , ... , A_n defined on S

$$P\left(\bigcup_{i=1}^{n}A_{i}\right) = \sum_{i=1}^{n}P(A_{i})$$

Examples Based on Classical Definition

Example (10): When tossing a coin once
 P(Head) = ½

 $P(Tail) = \frac{1}{2}$

Example (11): When tossing a coin twice P(2 Heads) = $\frac{1}{4}$, P(2 Tails) = $\frac{1}{4}$, P(1 Head) = $\frac{1}{2}$ P(at least 1 Head) = $\frac{3}{4}$

• Example (12): When tossing a coin 3 times

```
P(1 Head) = 3/8,
```

```
P(2 Heads) = 3/8,
```

```
P(3 Heads) = 1/8,
```

```
P(no Heads) = 1/8
```

• **Example** (13): When rolling a die once P(face 1) = ... = P(face 6) = 1/6 = 0.167P(even number) = 3/6 = 0.5,P(odd number) = 3/6 = 0.5,P(a number divisible by 3) = 2/6 = 0.333,P(a prime number) = 3/6 = 0.5

• **Example** (14): Rolling two dice once

P(odd number on the first die) = 18/36 = 0.5P(odd number on second die) = 18/36 = 0.5P(odd number on both dice) = 9/36 = 0.25P(getting a sum of 7) = 6/36 = 0.167P(equal numbers on both dice) = 6/36 = 0.167

• **Example** (15): Let A and be defined on the same sample space S such that:

 $P(A) = 0.3, P(B) = 0.25, P(A \cap B) = 0.07$

• $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ = 0.3 + 0.25 - 0.07 = 0.48

Example (16): Let A, B, C be defined on the same sample space S such that

 $P(A) = 0.3, P(B) = 0.25, P(C) = 0.40, P(A \cap B) = 0.07,$

 $P(A \cap C) = 0.09, P(B \cap C) = 0.08, P(A \cap B \cap C) = 0.03$

(i) P(at least 1 event will occur) = P(A U B U C)

= $P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C) = 0.74$

P(only A will occur) = P(A \cap B ^c \cap C ^c) = 0.17 P(only B will occur) = P($A^c \cap B \cap C^c$) = 0.13 P(only C will occur) = P($A^c \cap B^c \cap C$) = 0.26 (ii) P(only 1 event will occur) = P(only A) + P(only B) + P(only C)= 0.17 + 0.13 + 0.26= 0.56

P(only A and B will occur) = $P(A \cap B \cap C^{c}) = 0.04$ P(only A and C will occur) = P(A \cap B^c \cap C) = 0.06 P(only B and C will occur) = P($A^c \cap B \cap C$) = 0.05 (iii) P(only 2 events will occur) $= P(A \cap B \cap C^{c}) + P(A \cap B^{c} \cap C) + P(A^{c} \cap B \cap C)$ = 0.15

(iii) P(at least 2 events will occur)

- = $P(A \cap B \cap C^{c}) + P(A \cap B^{c} \cap C) + P(A^{c} \cap B \cap C) + P(A \cap B \cap C) = 0.18$
- (iv) P(no event will occur) = P[(A U B U C)^c]

$$P[A \cap (B \cup C)] = P[(A \cap B) \cup (A \cap C)]$$

= $P(A \cap B) + P(A \cap C) - P(A \cap B \cap C)$
(v) $P[A \cap (B \cup C)] = 0.07 + 0.09 - 0.03 = 0.13$
 $P[A \cup (B \cap C)] = P(A) + P(B \cap C) - P(A \cap B \cap C)$
(vi) $P[A \cup (B \cap C)] = 0.3 + 0.08 - 0.03 = 0.35$