King Abdulaziz University Faculty of Science Department of Statistics

STAT 210 THEORY OF PROBABILITY

COMPUTER SCIENCE STUDENTS

CHAPTER I COMBINATORIAL ANALYSIS

COMBINATORIAL ANALYSIS

- Basic Counting Principle:

If a process P_{1} can occur in n_{1} different ways and to each of these ways a process P_{2} can occur in n_{2} different ways, then
P_{1} and P_{2} will occur in $n_{1} \times n_{2}$ different ways

COMBINATORIAL ANALYSIS

- Example (1):

Process 1: going from Home to Transport station Let P_{1} can occur in $n_{1}=3$ ways.
Process 2: going from transport station to work Let P_{2} can occur in $n_{2}=4$ ways.
P_{1} and P_{2} can occur in $n_{1} \times n_{2}=3 \times 4=12$ ways.

COMBINATORIAL ANALYSIS

- Generalized Counting Principle

If a process P_{1} can occur in n_{1} different ways and to each of these ways a process P_{2} can occur in n_{2} different ways, and so on ..., then Processes P_{1}, P_{2}, \ldots, and P_{k} will occur in

$$
n_{1} \times n_{2} \times \ldots \times n_{k}
$$

different ways.

COMBINATORIAL ANALYSIS

- Example (2):

From a group of 10 American, 6 French, and 8 Russian of multi-national peace forces, a subgroup of 3 persons (1 from each nationality) is to be selected. How many such subcommittees
can be formed?

Solution:

Required Number $=10 \times 6 \times 8$
$=480$ subcommittee

COMBINATORIAL ANALYSIS

- Permutations:
- A permutation of n different objects is an arrangement of these n objects.
- The number of permutations of n different objects, taken all at a time, is n !
- The number of permutations of n different objects, taken $r(r \leq n)$ at a time, is denoted and defined by

$$
{ }^{n} P_{r}=\frac{n!}{(n-r)!}, O \leq r \leq n
$$

COMBINATORIAL ANALYSIS

- Remarks:

(i) ${ }^{n} P_{0}=1$
(ii) ${ }^{n} P_{n}=n$!
(iii) ${ }^{n} P_{1}=n$
(iv) ${ }^{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1)$

COMBINATORIAL ANALYSIS

- Example (3):

A group of 6 American, 5 French, and 4 Russian of multi-national peace forces, is to be ordered in a row. Determine the number of possible orderings if no additional restrictions are imposed.
Solution:
Required Number $=(6+5+4)!=15!$

COMBINATORIAL ANALYSIS

- Example (4):

A group of 6 American, 5 French, and 4 Russian of multi-national peace forces, is to be ordered in a row. Find the number of possible American - French - Russian orderings, if each nationality is to be ordered within itself. Solution:
Required Number $=6!$ X $5!\times 4!=2073600$

COMBINATORIAL ANALYSIS

- Example (5):

A group of 6 American, 5 French, and 4 Russian of multi-national peace forces, is to be ordered in a row. Find the number of possible orderings in any order, if each nationality is to be ordered within itself.
Solution:
Required Number $=3!\times(6!\times 5!\times 4!)$
$=12441600$

COMBINATORIAL ANALYSIS

- Example (6):

By rearrangement of the letters of the word "PETROLIUM", the number of
(i) 2-letter words $={ }^{9} P_{2}=9 \times 8=72$
(ii) 3-letter words $={ }^{9} P_{3}=9 \times 8 \times 7=504$
(iii) 4-letter words $={ }^{9} \mathrm{P}_{4}=9 \times 8 \times 7 \times 6=3024$
(iv) 5-letter words $={ }^{9} P_{5}=9 \times 8 \times 7 \times 6 \times 5=15120$

COMBINATORIAL ANALYSIS

(v) 6-letter words $={ }^{9} \mathrm{P}_{6}$

$$
=9 \times 8 \times 7 \times 6 \times 5 \times 4=60480
$$

(vi) 7-letter words $={ }^{9} \mathrm{P}_{7}$

$$
=9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3=181440
$$

(vii) 8-letter words $={ }^{9} \mathrm{P}_{8}$

$$
=9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2=362880
$$

(viii) 9 - letter words $=9!=362880$

COMBINATORIAL ANALYSIS

- Combinations:

The number of different groups of r objects, that could be formed of a total of n objects is denoted and defined by

$$
\binom{n}{r}={ }^{n} C_{r}=\frac{n!}{r!(n-r)!}, r \leq n
$$

COMBINATORIAL ANALYSIS

- Remarks:

(i) ${ }^{n} \mathrm{C}_{0}=1$
(ii) ${ }^{n} \mathrm{C}_{1}=\mathrm{n}$
(iii) ${ }^{n} C_{n}=1$
(iv) ${ }^{n} C_{r}={ }^{n} C_{n-r}$

COMBINATORIAL ANALYSIS

- Example (6):

When tossing a coin 4 times, the number of
(i) outcomes with no Heads $={ }^{4} \mathrm{C}_{0}=1$
(ii) outcomes with $1 \mathrm{Head} \quad={ }^{4} \mathrm{C}_{1}=4$
(iii) outcomes with 2 Heads $={ }^{4} \mathrm{C}_{2}=6$
(iv) outcomes with 3 Heads $={ }^{4} \mathrm{C}_{3}=4$
(v) outcomes with 4 Heads $={ }^{4} C_{4}=1$

COMBINATORIAL ANALYSIS

- Example (7):

Five persons are selected at random from a group of 6 men and 8 women. Find the number of selections with 3 men \& 2 women.

- Solution:

Required Number $={ }^{6} \mathrm{C}_{3} \times{ }^{8} \mathrm{C}_{2}=20 \times 28=560$
Remark :The selection of persons is logically without replacement.

COMBINATORIAL ANALYSIS

- Example (8):

Seven persons are selected at random from a group of 6 men, 8 women, and 4 children.
Find the number of selections with 3 men, 2
women and 2 children.

- Solution:

Required Number $={ }^{6} \mathrm{C}_{3} \times{ }^{8} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2}$
$=20 \times 28 \times 6=3360$

COMBINATORIAL ANALYSIS

- Example (9):

Four persons are selected at random from a group of 6 men, 8 women, and 4 children. Find the number of selections with equal number of men and women

- Solution:

$$
\begin{aligned}
\text { Req. } & ={ }^{6} \mathrm{C}_{0} \times{ }^{8} \mathrm{C}_{0} \times{ }^{4} \mathrm{C}_{4}+{ }^{6} \mathrm{C}_{1} \times{ }^{8} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{2}+ \\
& +{ }^{6} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{0}=709
\end{aligned}
$$

COMBINATORIAL ANALYSIS

- Example (10):

Five persons are selected at random from a group of 6 men, 8 women, and 4 children.
Find the number of selections with $\underline{2}$ men and at least 1 woman.

- Solution:

Required $={ }^{6} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{1}$

$$
+{ }^{6} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{0}=3240
$$

COMBINATORIAL ANALYSIS

- Example (11):

Four persons are selected at random from a group of 6 men, 8 women, and 4 children. Find the number of selections in which all persons have the same gender

- Solution:

Required Number $={ }^{6} \mathrm{C}_{4}+{ }^{8} \mathrm{C}_{4}+{ }^{4} \mathrm{C}_{4}$
$=86$

COMBINATORIAL ANALYSIS

- Example (12):

Four persons are selected at random from a group of 6 men, 8 women, and 4 children. Find the number of selections in which "all selected persons are not of the same gender".

- Solution:

$$
\begin{aligned}
\text { Required } & =\mathrm{N}(\mathrm{~S})-\mathrm{N}(\text { all of the same gender }) \\
& ={ }^{18} \mathrm{C}_{4}-\left[{ }^{6} \mathrm{C}_{4}+{ }^{8} \mathrm{C}_{4}+{ }^{4} \mathrm{C}_{4}\right] \\
& =3060-86=2974
\end{aligned}
$$

COMBINATORIAL ANALYSIS

- Example (13):

Four persons are selected at random from a group of 6 men, 8 women, and 4 children. Find the number of selections in which "all genders are present" in the selected sample.

- Solution:

$$
\begin{aligned}
\text { Required } & ={ }^{6} \mathrm{C}_{2}{ }^{8} \mathrm{C}_{1}{ }^{4} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{1}{ }^{8} \mathrm{C}_{2}{ }^{4} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{1}{ }^{8} \mathrm{C}_{1}{ }^{4} \mathrm{C}_{2} \\
& =480+672+288 \\
& =1440
\end{aligned}
$$

COMBINATORIAL ANALYSIS

Binomial Expansion
 (n positive integer)

$$
\begin{gathered}
(x+y)^{n}=\sum_{k=0}^{n}{ }^{n} C_{k} y^{k} x^{n-k}={ }^{n} C_{0} x^{n} y^{0}+{ }^{n} C_{1} x^{n-1} y^{1}+\ldots+{ }^{n} C_{n} x^{0} y^{n} \\
(x+y)^{n}=x^{n}+n x^{n-1} y^{1}+\frac{n(n-1)}{2!} x^{n}{ }^{2} y^{2}+\ldots+y^{n}
\end{gathered}
$$

COMBINATORIAL ANALYSIS

Example (14):

$$
\begin{aligned}
& (x+y)^{4}=\sum_{k=0}^{4}{ }^{4} C_{k} y^{k} x^{4-}={ }^{4} C_{0} x^{4}+{ }^{4} C_{1} x^{3} y^{1}+\ldots+{ }^{4} C_{4} y^{4} \\
& (x+y)^{4}=x^{4}+4 x^{3} y^{1}+6 x^{2} y^{2}+4 x y^{3}+y^{4}
\end{aligned}
$$

The expansion contains 5 terms

COMBINATORIAL ANALYSIS

- The coefficients in the binomial expansion can be determined from Pascal's triangle:

$$
\begin{array}{ccccccccccc}
& & & & 1 & 1 & 1 & & & \\
& & & 1 & & 2 & & 1 & & & \\
& & 1 & & 3 & & 3 & & 1 & & \\
& 1 & & 4 & & 6 & & 4 & & 1 & \\
& 1 & 5 & & & & & & & & \\
10 & & & 10 & & 5 & & 1
\end{array}
$$

COMBINATORIAL ANALYSIS

- Example (15):

- In the expansion of $(x+y)^{5}$ the coefficients are respectively: $1,5,10,10,5,1$.

$$
(x+y)^{5}=x^{5}+5 x^{4} y^{1}+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5}
$$

COMBINATORIAL ANALYSIS

- Multinomial coefficients:

The number of permutations of n objects that contains k_{1} of type $1, \mathrm{k}_{2}$ of type $2, \ldots, k_{r}$ of type r is denoted and defined by:

$$
\binom{n}{k_{1}, k_{2}, \ldots, k_{r}}=\frac{n!}{k_{1}!k_{2}!\ldots k_{r}!}, k_{1}+k_{2}+\ldots+k_{r}=n
$$

COMBINATORIAL ANALYSIS

- Example (16):

Determine the number of words that can be formed by rearranging the letters of the word "STATISTICS".

Solution. We have 10 letters containing : 3 " S ", 3 " T ", 2 " I ", 1 " " ", and 1 " C ". Required Number $=10$! / [3! x $3!\times 2!\times 1!\times 1$!] = 50400

