CHAPTER 4 SOME DISCRETE PROBABILITY DISTRIBUTIONS

Discrete Probability Distributions

1. Bernoulli distribution

Definition "Bernoulli trial"

It is a random experiment, whose outcomes is either:
(a) "A = success" with probability $p, 0<p<1$, or (b) "not A = failure" with probability $1-p=q$ Examples :
(i) Tossing a coin once and looking for "Head"
(ii) Rolling a die once and looking for "face 1"

Discrete Probability Distributions

Now let X denote the number of successes in one Bernoulli trial.
The possible values of X are 0,1 .
It is clear that X is a discrete r. v. with
$P(X=1)=P($ success $)=p, 0<p<1$
$\mathrm{P}(\mathrm{X}=0)=\mathrm{P}$ (failure) $=\mathrm{q}, 0<\mathrm{q}<1$
Such that $\mathrm{p}+\mathrm{q}=1$.

Discrete Probability Distributions

The probability mass function (PMF) of X is

$$
f(x)=P(X=x)=p^{x} q^{1-x}, x=0,1,0<p, q<1, p+q=1
$$

This is called the Bernoulli distribution with one parameter p .
This is referred to simply, as

$$
X \sim \operatorname{Ber}(p)
$$

Discrete Probability Distributions

Characteristics of Bernoulli distribution

(a) Mean $E(X)=p$
(b) Variance $\operatorname{Var}(\mathrm{X})=\mathrm{pq}$
(c) Standard deviation $\quad \sigma=\sqrt{p q}$
(d) The moment generating function

$$
M_{X}(t)=E\left[e^{t X}\right]=q+p e^{t}
$$

(e) The probability generating function is

$$
G_{X}(t)=E\left[t^{X}\right]=q+p t
$$

Discrete Probability Distributions

2. Binomial distribution

Consider n Bernoulli trials such that:
C1. The outcome of each trial is either "success" with probability p, or "failure" with probability q
C2. The probability p of success remains constant, i.e. it doesn't change from trial to trial.
C3. The trials are independent.

Discrete Probability Distributions

Let X be a r. v. denoting the number of successes in these n trials
The possible values of X are $X=0,1,2, \ldots, n$
It is clear that X is a discrete r . v .
The probability mass function of X is

$$
f(x)=P(X=x)=\binom{n}{x} p^{x} q^{n-x}, x=0,1,2, \ldots, n
$$

This is called binomial distribution with parameters
n and p . We write $\quad X \sim \operatorname{Bin}(n, p)$

Discrete Probability Distributions

Characteristics of binomial distribution

(a) Mean $=E(X)=n p$
(b) Variance $=\operatorname{Var}(X)=n p q$
(c) Standard deviation $\sigma=\sqrt{n p q}$
(d) Moment generating function

$$
M_{X}(t)=E\left[e^{t X}\right]=\left(q+p e^{t}\right)^{n}
$$

(e) Probability generating function $G(t)=(q+p t)^{n}$

Discrete Probability Distributions

Example (1):

A fair coin is tossed 6 times. Find the probability that the Head will appear:
(a) Exactly 3 times
(b) At least 2 times
(c) At most 4 times

Solution

Discrete Probability Distributions

We have

$$
f(x)=P(X=x)=\binom{6}{x}\left(\frac{1}{2}\right)^{6}, x=0,1, \ldots, 6
$$

(a) $P(X=3)=f(3)=0.313$
(b) $P(X \geq 2)=f(2)+f(3)+\ldots+f(6)=1-[f(0)+f(1)]$ $=1-0.109=0.891$
(c) $P(X \leq 4)=1-[f(5)+f(6)]=1-0.109=0.891$

Discrete Probability Distributions

- Example (2):

A person fires at a certain target in 6 independent successive trials with a constant probability 0.9 of hitting the target. Find the probability of hitting the target:
(i) Exactly 2 times
(ii) At least 4 times
(iii) At most 3 times

Discrete Probability Distributions

- Solution:

Let $X=$ number of times of hitting the target.
$X \sim \operatorname{Bin}(6,0.9)$.

$$
f(x)=P(X=x)=\binom{6}{x}(0.9)^{x}(0.1)^{6-x}, x=0,1,2, \ldots, 6
$$

(i) Req. Prob. $=P(X=2)=f(2)=\ldots$
(ii) Req. Prob. $=P(X \geq 4)=f(4)+f(5)+f(6)=\ldots$
(iii) Req. Prob. $=P(X \leq 3)=f(0)+f(1)+f(2)+f(3)=\ldots$

Discrete Probability Distributions

- Example (3) :

Find the mean, the variance, and the standard deviation of the number of hitting in Example (2).

- Solution

Mean $=E(X)=n p=6 * 0.9=5.4$
Variance $=\operatorname{Var}(X)=n p q=6 * 0.9 * 0.1=0.54$
Standard deviation $=\sigma=0.73$

Discrete Probability Distributions

Example (4): The moment generating function of the r. $\mathrm{v} . \mathrm{X}$ is

$$
M_{x}(t)=\left(0.25+0.75 e^{t}\right)^{6}
$$

Determine the probability distribution of X. Find the mean and variance.

Solution

$X \sim \operatorname{Bin}(6,0.75)$.
$E(X)=6 * 0.75=4.5 . \operatorname{Var}(X)=6 * 0.75 * 0.25=1.125$

Discrete Probability Distributions

3. Poisson distribution

Let X be a random variable denoting the number of successes in a sequence of $n(n \geq 30)$ Bernoulli trials with probability p ($p<0.5$) of successes, satisfying the conditions C1 - C3 of the binomial distribution such that $n \mathrm{p}=\lambda$ is finite.
It is clear that X is a discrete r . v. with possible values $X=0,1,2, \ldots$

Discrete Probability Distributions

The probability mass function of X is

$$
f(x)=P(X=x)=\frac{\lambda^{x}}{x!} e^{-\lambda}, x=0,1,2, \ldots, 0<\lambda<\infty
$$

In this case, we say X has a Poisson Distribution with parameter λ and write

$$
X \sim \operatorname{Poi}(\lambda)
$$

Discrete Probability Distributions

Characteristics of Poisson distribution

(a) Poisson distribution is a limiting distribution of the binomial distribution as n tends to ∞.
(b) Poisson distribution is called the distribution of rare events. It is used when n is large and p is small, such that $\lambda=n \mathrm{p}<\infty$.
(c) Mean = Variance $=\lambda$
(d) Standard deviation $=\sqrt{\lambda}$

Discrete Probability Distributions

(e) The MGF is

$$
M_{X}(t)=e^{\lambda(\exp t-1)}
$$

(f) The PGF is

$$
G_{X}(t)=e^{\lambda(t-1)}
$$

Discrete Probability Distributions

Example (5)

The number X of annual earthquakes in a certain country has a mean 4 . What is the probability distribution of X.

Solution

Because of the earthquake is a rare event, then the distribution of X is Poisson distribution with parameter $\lambda=4$.

Discrete Probability Distributions

Example (6)

Consider the case when X has a Poisson distribution with parameter 3.

In this case:

(i) The PMF of X is $f(x)=P(X=x)=\frac{3^{x}}{x!} e^{-3}, x=0,1,2, \ldots \infty$
(ii) $E(X)=\operatorname{Var}(X)=3$
(iii) $P(X=2)=f(2)=4.5 e^{-3}=0.224$

Discrete Probability Distributions

(iv) $P(X$ is at least 3$)=P(X \geq 3)=f(3)+f(4)+\ldots$

$$
\begin{aligned}
& =1-[f(0)+f(1)+f(2)] \\
& =1-8.5 e^{-3}=1-0.423=0.577
\end{aligned}
$$

(v) $P(X$ is at most 2$)=P(X \leq 2)=f(0)+f(1)+f(2)$

$$
=8.5 \mathrm{e}^{-3}=0.423
$$

Discrete Probability Distributions

4. Geometric distribution

Let X be a r. v. denoting the number of Bernoulli trials, required to obtain the first success.
The possible values of X are $X=1,2, \ldots$
It is clear that X is a discrete r. v. with
$P(X=1)=p$
$P(X=2)=p q, \ldots$

Discrete Probability Distributions

In general $\quad f(x)=P(X=x)=p q^{x-1}, x=1,2, \ldots \infty$
This is called the geometric distribution with parameter p.
We denote this by writing $\quad x \sim \operatorname{Geom}(p)$

$$
\begin{gathered}
E(X)=\frac{1}{p}, \quad \operatorname{Var}(X) \quad \frac{q}{p^{2}} \\
M_{X}(t)=\frac{p e^{t}}{1-q e^{t}}, \quad G_{X}(t)=\frac{p t}{1-q t}
\end{gathered}
$$

Discrete Probability Distributions

Example (7)

Consider the case $X \sim \operatorname{Geom}(0.65)$
This means that X has a geometric distribution with parameter $p=0.65$
Thus

$$
f(x)=P(X=x)=(0.65)(0.35)^{x-1}, x=1,2, \ldots \infty
$$

We have:

Discrete Probability Distributions

(i) $E(X)=1 / 0.65=1.538$
(ii) $\operatorname{Var}(X)=0.35 /(0.65)^{2}=0.828$
(iii) $P(X=3)=f(3)=0.080$
(iv) $P(X>2)=1-f(1)-f(2)=0.122$
(v) $P(X<4)=f(1)+f(2)+f(3)=0.957$

Discrete Probability Distributions

- Example (8):

A person fires at a certain target in a sequence of independent successive trials with a constant probability 0.9 of hitting the target. Find the probability of hitting the target for the first time in:
(i) Exactly 2 trials
(ii) At least 4 trials
(iii) At most 3 trials

Discrete Probability Distributions

- Solution

Let $X=$ number of trials, required to hit the target for the first time. Consequently,

$$
\begin{gathered}
\mathrm{X} \sim \operatorname{Geo}(0.9) \\
\mathrm{f}(\mathrm{x})=(0.9)(0.1)^{\mathrm{x}-1}, \mathrm{x}=1,2,3, \ldots
\end{gathered}
$$

(i) Req. Prob. $=P(X=2)=f(2)=\ldots$
(ii) Req. Prob. $=P(X \geq 4)=1-[f(1)+f(2)+f(3)]=\ldots$
(iii)Req. Prob. $=P(X \leq 3)=f(1)+f(2)+f(3)=\ldots$

Discrete Probability Distributions

- Example (9) :

Find the mean, the variance, and the standard deviation of the number of hitting in Example (8).

- Solution

Mean $=E(X)=1 / p=1 / 0.9=1.111$
Variance $=\operatorname{Var}(X)=q / p^{2}=0.1 /(0.9)^{2}=0.123$
Standard deviation $=\sigma=0.351$

Discrete Probability Distributions

- Example (10):

The MGF of the random variable X is

$$
M_{X}(t)=\frac{0.65 e^{t}}{1-0.35 e^{t}}
$$

- Find the probability distribution of X. Find the mean, the variance, and the standard deviation of X.

Discrete Probability Distributions

- Solution

It is clear that X has a geometric distribution with parameter $p=0.65$. Therefore

$$
f(x)=P(X=x)=(0.65)(0.35)^{x-1}, x=1,2, \ldots
$$

Mean $=E(X)=1 / 0.65=1.538$
Variance $=\operatorname{Var}(X)=0.35 / 0.65=0.828$
Standard deviation $=\sigma=0.91$

Discrete Probability Distributions

5. Negative binomial distribution

Let X be a r. v. denoting the number of Bernoulli trials required to obtain the first k successes.
The possible values of X are $k, k+1, k+2, \ldots$
It is clear that X is a discrete random variable.
We can prove that the PMF of X has the form:

$$
f(x)=P(X=x)={ }^{x-1} C_{k-1} p^{k} q^{x-k}, x=k, k+1, \ldots \infty
$$

Discrete Probability Distributions

In this case, we say that X has a negative binomial distribution with parameters k, p.
This is referred to by writing $\quad X \sim N B(k, p)$
Note that
The negative binomial distribution reduces to the geometric distribution when $\mathrm{k}=1$.
Thus, the geometric distribution is a special case of the negative binomial distribution.

Discrete Probability Distributions

Characteristics of negative binomial distribution

(a) $E(X)=k / p$
(b) $\operatorname{Var}(X)=k q / p^{2}$
(c) The MGF is $M_{X}()=\left(\frac{p e^{t}}{1-q e^{t}}\right)^{k}$
(d) The probability generating function is

$$
G_{X}(t)=\left(\frac{p t}{1-q t}\right)^{k}
$$

Discrete Probability Distributions

Example (11)

Consider the case when $X \sim N B(5,0.8)$. This means that X has negative binomial distribution with $k=5$ and $p=0.8$.

In this case

(a) $E(X)=5 / 0.8=6.25$
(b) $\operatorname{Var}(X)=5^{*} 0.2 /(0.8)^{2}=1.563$
(c)

$$
P(X=7)=\binom{6}{4}(0.8)^{5}(0.2)=0.197
$$

Discrete Probability Distributions

6. Hyper-geometric distribution

Consider a collection of k of objects of a certain Type and $\mathrm{N}-\mathrm{k}$ of another Type.
A random sample of size n is drawn without replacement.
Let X be a random variable denoting the number of objects of the first type in the selected sample.

Discrete Probability Distributions

The PMF of X is
$f(x)=P(X=x)=\frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}, x=\max (0, n+k-N), \ldots, \min (k, n)$
In this case, we say that X has a hyper-geometric distribution with parameters $\mathrm{N}, \mathrm{k}, \mathrm{n}$ and write

$$
X \sim H G(N, k, n)
$$

Discrete Probability Distributions

Characteristics of hyper-geometric distribution $\mathrm{X} \sim \mathrm{HG}(\mathrm{N}, \mathrm{k}, \mathrm{n})$
(i) Mean

$$
E(X)=n p=n\left(\frac{k}{N}\right)
$$

(ii) Variance

$$
\operatorname{Var}(X)=n p q=n\left(\frac{k}{N}\right)\left(1-\frac{k}{N}\right)\left(\frac{N-n}{N-1}\right)
$$

Discrete Probability Distributions

Example (12)

From a group of 6 men and 4 women, a random sample of size 5 persons is selected without replacement. Let X denotes the number of men in the sample.
It is clear that X has $\operatorname{HG}(10,6,5)$. The PMF of X is

$$
f(x)=P(X=x)=\frac{\binom{6}{x}\binom{4}{5-x}}{\binom{10}{5}}, x=1, \ldots, 5
$$

Discrete Probability Distributions

We have
(i) $P(2$ men are selected $)=P(X=2)=f(2)=0.238$
(ii) $P($ selecting 2 women $)=P(X=3)=f(3)=0.476$
(iii) $P($ less than 3 men $)=f(1)+f(2)$

$$
\begin{aligned}
& =0.024+0.238 \\
& =0.262
\end{aligned}
$$

Discrete Probability Distributions

- Example (13):

Calculate the mean, variance, and standard deviation of X in Example (12).
Solution

$$
\begin{gathered}
E(X)=n p=n\left(\frac{k}{N}\right)=3 \\
\operatorname{Var}(X)=n p q=n\left(\frac{k}{N}\right)\left(1-\frac{k}{N}\right)\left(\frac{N-n}{N-1}\right)=0.667
\end{gathered}
$$

Standard deviation $=\sigma=0.816$

