KING ABDULAZIZ UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF STATISTICS

STAT 211 Probability Theory (1)

STATISTICS & MATHEMATICS STUDENTS

CHAPTER 1 INTRODUCTION TO PROBABILITY

<u>Random Experiment</u>:

It is an experiment , whose possible outcomes are known, but cannot be predicted with certainty.

• Examples:

<u>Example</u> 1. Tossing a coin once <u>Example</u> 2. Rolling a die once <u>Example</u> 3. Drawing a card from a deck

<u>Sample Space</u>:

It is a set whose elements represent all possible outcomes of a random experiment. It is usually denoted by S.

• Examples :

<u>In Example</u> (1): S = {Head, Tail} = {H, T} <u>In Example</u> (2): S = {1, 2, 3, 4, 5, 6} <u>In Example (</u>3): S = {1, 2, ..., 10, Jack, Queen, King}

• More Examples :

Example (4): Tossing a coin twice

 $S = \{HH, HT, TH, TT\}.$

Example (5): Rolling a die twice

Example (6): Tossing a coin 3 times

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.

- Example (7): When tossing a coin until a Head appears, the sample space is
 S = {H, TH, TTH, ...}
- <u>Example</u> (8): Random selection of a point on a line results in the sample space

$$S = \{x \mid -\infty < x < \infty\}$$

• **Example** (9): Random selection of a point in the x, y plane results in the sample space

$$S = \{(x, y) \mid -\infty < x < \infty \text{ and } -\infty < y < \infty\}$$

- Example (10): Random selection of a point inside the unit circle results in the sample space S = {(x, y) | x² + y² < 1}
- **Example** (11): Random selection of a point outside the unit circle results in the sample space

$$S = \{(x, y) | x^2 + y^2 > 1\}$$

• <u>Sample spaces are classified into</u>:

(i) Finite sample spaces: Examples 1 – 6.
(ii) Denumerable (countable) S. S.: Example 7
(iii)Infinite S. S.: Examples 8 – 11.

• <u>Event</u> :

It is a subset of the sample space. It is usually denoted by A, B,

• Examples:

Example (12): when rolling a die once

- A = outcome is an even number = $\{2, 4, 6\}$
- B = outcome is an odd number = {1, 3, 5}
- C = outcome is divisible by $3 = \{3, 6\}$

Example (13): when rolling a die twice

- A = getting a sum of 7
 - $= \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}$

B = getting a sum of at least 9 = {(3, 6), (4, 5), (5, 4), (6, 3), (4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6)}

C = getting a sum of at most 5

$= \{(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1)\}$

- **Example** (14): When tossing a coin 3 times
 - A = getting one Head = {HTT, THT, TTH}
 - B = getting 2 Heads = {HHT, HTH, THH}
 - C = getting at least 1 Head
 - = {HTT, THT, TTH, HHT, HTH, THH, HHH}
 - D = getting at most 2 Heads
 - = {TTT, HTT, THT, TTH, HHT, HTH, THH}

Logical Dictionary

Symbol	Set Theory	Probability Theory
А	set	event
Ac	Complement of A	Event "not A"
φ	Empty set	Impossible event
S	Universal set	Sample space
A U B	Union of A and B	Event "A or B"
$A\cap \mathrm{B}$	Intersection of A and B	Event "Both A and B"
А — В	Difference between A and B	Event "A, but not B"
$A\capB=\varphi$	A and B Disjoint sets	A and B Mutually exclusive

• <u>Definition of Probability of an event</u>

(1) Subjective Approach

It depends on the experience and the amount of available information

(2) Empirical Approach

It depends on repeating the experiment "n" times and noting the number "m" of occurrence of the event A, and taking

P(A) = m / n for sufficiently large n.

(3) Classical Approach

It depends on assuming that all outcomes are equally likely. In this case

$$P(A) = \frac{n(A)}{n(S)}$$

where

n(A) = number of sample points in An(S) = number of sample points in S

Mathematical (Axiomatic) Definition

It depends on Axioms of Probability:

- (i) **<u>Axiom 1</u>**: For every event A in S: $P(A) \ge 0$
- (ii) <u>Axiom 2</u>: P(S) = 1
- (iii) <u>Axiom 3</u>: For mutually exclusive eventsA and B in S:

 $P(A \cup B) = P(A) + P(B)$

Some Basic Theorems

```
(1) For any event A in S:

0 \le P(A) \le 1

(2) For any event A in S:

P(A) + P(A^c) = 1

(3) For any events A, B in S:

P(A \cup B) = P(A) + P(B) - P(A \cap B)
```


(5) For events A, B such that $A \subset B$:

```
P(A) \leq P(B)
```

• <u>Special case</u>: When $A_1 \le A_2 \le ... \le A_n$ we have $P(A_1) \le P(A_2) \le ... \le P(A_n)$

(6) For any events A, B, C in S:

 $P(A \cup B \cup C) = P(A) + P(B) + P(C)$ $- P(A \cap B) - P(A \cap C) - P(B \cap C)$ $+ P(A \cap B \cap C)$

Remark:

For mutually exclusive events A, B, and C in S:

(1)
$$P(A \cup B) = P(A) + P(B)$$

(2) $P(A \cup B \cup C) = P(A) + P(B) + P(C)$

Examples Based on Classical Definition

Example (15): When tossing a coin once, the sample space is
 S = {head , tail} = {H , T}

```
P(Head) = \frac{1}{2}
```

```
P(Tail) = \frac{1}{2}
```

Example (16): When tossing a coin twice, the sample space is
 S = {HH, HT, TH, TT}

```
P( 2 Heads) = \frac{1}{4},
P(2 Tails) = \frac{1}{4},
P(1 Head) = \frac{1}{2}
P(at least 1 Head) = \frac{3}{4}
```

Example (17): When tossing a coin 3 times, the sample space is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

```
P(1 \text{ Head}) = 3/8,
```

```
P(2 Heads) = 3/8,
```

```
P(3 Heads) = 1/8,
```

```
P(no Heads) = 1/8
```

• **Example** (18): When rolling a die once

 $S = \{1, 2, 3, 4, 5, 6\}$ P(face 1) = ... = P(face 6) = 1/6 =0.167 P(even number) = 3/6 = 0.5, P(odd number) = 3/6 = 0.5,

P(a number divisible by 3) = 2/6 = 0.333,

P(a prime number) = 3/6 = 0.5

• **Example** (19): Rolling two dice once

$$S = \{(x, y) | x, y = 1, 2, 3, 4, 5, 6\}$$

P(odd number on first die) = 18/36 = 0.5

- P(odd number on second die) = 18/36 = 0.5
- P(odd number on both dice) = 9/36 = 0.25
- P(getting a sum of 7) = 6/36 = 0.167
- P(equal numbers on both dice) = 6/36 = 0.167

• **Example** (20): Let A and B be defined on the same sample space S such that:

$$P(A) = 0.3, P(B) = 0.25, P(A \cap B) = 0.07$$

• $P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$ = 0.3 + 0.25 - 0.07= 0.48

Example (21): Let A, B, C be defined on the same sample space S such that

 $P(A) = 0.3, P(B) = 0.25, P(C) = 0.40, P(A \cap B) = 0.07,$

 $P(A \cap C) = 0.09, P(B \cap C) = 0.08, P(A \cap B \cap C) = 0.03$

P(at least 1 event will occur) = P(A U B U C)

= $P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C) = 0.74$

P(only 1 event will occur)

- $= P(A \cap B^{c} \cap C^{c}) + P(A^{c} \cap B \cap C^{c}) + P(A^{c} \cap B^{c} \cap C)$
- = 0.17 + 0.13 + 0.26
- = 0.56

P(only 2 events will occur)

= $P(A \cap B \cap C^{c}) + P(A \cap B^{c} \cap C) + P(A^{c} \cap B \cap C)$

= 0.15

P(at least 2 events will occur)

- $= P(A \cap B \cap C^{c}) + P(A \cap B^{c} \cap C) + P(A^{c} \cap B \cap C) + P(A \cap B \cap C)$
- = 0.18

P(no event will occur) = P[(A U B U C)^c]

$$= 1 - P(A \cup B \cup C)$$

$$= 1 - 0.74$$

= 0.26

Permutations:

- A permutation of n different objects is an arrangement of these n objects
- The number of permutations of n different objects, taken all at a time, is n!
- The number of permutations of n different objects, taken r (r ≤ n) at a time, is denoted by

$${}^{n}P_{r} = \frac{n!}{(n-r)!}, 0 \le r \le n$$

<u>Remarks</u>:

```
(i) ^{n} P_{0} = 1

(ii) ^{n} P_{n} = n!

(iii) ^{n} P_{1} = n

(iv) ^{n} P_{r} = n (n - 1) (n - 2) ... (n - r + 1)
```

• **Example** (22):

By rearrangement of the letters of the word "PETROLIUM ", the number of

- 2-letter words = ${}^{9}P_{2} = 9 \times 8 = 72$
- 3-letter words = ${}^{9}P_{3} = 9 \times 8 \times 7 = 504$
- 4-letter words = ${}^{9}P_{4} = 9 \times 8 \times 7 \times 6 = 3024$
- 5-letter words = ${}^{9}P_{5} = 9 \times 8 \times 7 \times 6 \times 5 = 15120$

- 6-letter words = ${}^{9}P_{6} = 9 \times 8 \times 7 \times 6 \times 5 \times 4$ = 60480
- 7-letter words = ${}^{9}P_{7} = 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3$ = 181440
- 8-letter words = ${}^{9}P_{8}$ = 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 = 362880
- 9 letter words = 9! = 362880

• <u>Combinations</u>:

The number of groups of r objects, selected at random from n objects is denoted and defined by

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}, r \le n$$

• <u>Remarks</u>:

```
(i) {}^{n} C_{0} = 1

(ii) {}^{n} C_{1} = n

(iii) {}^{n} C_{n} = 1

(iv) {}^{n} C_{r} = {}^{n} C_{n-r}

(v) {}^{n} C_{r} = {}^{n} P_{r} / r!
```

• <u>Example (23)</u>:

When tossing a coin 4 times, the number of

- outcomes with no Heads = ${}^{4}C_{0} = 1$
- outcomes with 1Head = ${}^{4}C_{1} = 4$
- outcomes with 2 Heads = ${}^{4}C_{2} = 6$
- outcomes with 3 Heads = ${}^{4}C_{3} = 4$
- outcomes with 4 Heads = ${}^{4}C_{4} = 1$

Basic Counting Principle:

If a process P_1 can occur in n_1 different ways and to each of these ways a process P_2 can occur in n_2 different ways, then

 P_1 and P_2 will occur in $n_1 \times n_2$ different ways

Generalized Counting Principle

If a process P_1 can occur in n_1 different ways and to each of these ways a process P_2 can occur in n_2 different ways, and so on ..., then Processes P_1 , P_2 , ..., and P_k will occur in $n_1 x n_2 x ... x n_k$ different ways

• <u>Example (24)</u>:

Five persons are selected at random from a group of 6 men and 8 women. Find the number of selections with 3 men & 2 women.

<u>Solution</u>:

Required Number = ${}^{6}C_{3} \times {}^{8}C_{2} = 20 \times 28 = 560$

• <u>Example (25)</u>:

Seven persons are selected at random from a group of 6 men, 8 women, and 4 children. Find the number of selections with 3 men, 2 women, and 2 children.

<u>Solution</u>:

Required Number =
$${}^{6}C_{3} \times {}^{8}C_{2} \times {}^{4}C_{2}$$

= 20 x 28 x 6 = 3360

• <u>Example (26)</u>:

Four persons are selected at random from a group of 6 men, 8 women, and 4 children. Find the number of selections with equal number of men and women

<u>Solution</u>:

Req. =
$${}^{6}C_{0} \times {}^{8}C_{0} \times {}^{4}C_{4} + {}^{6}C_{1} \times {}^{8}C_{1} \times {}^{4}C_{2} + {}^{6}C_{2} \times {}^{8}C_{2} \times {}^{8}C_{2} \times {}^{4}C_{0} = 709$$

• <u>Example (27)</u>:

Five persons are selected at random from a group of 6 men, 8 women, and 4 children. Find the number of selections with 2 men and at least 1 woman.

<u>Solution</u>:

Required =
$${}^{6}C_{2} \times {}^{8}C_{1} \times {}^{4}C_{2} + {}^{6}C_{2} \times {}^{8}C_{2} \times {}^{4}C_{1}$$

+ ${}^{6}C_{2} \times {}^{8}C_{3} \times {}^{4}C_{0} = 3240$

• <u>Example (28)</u>:

Four persons are selected at random from a group of 6 men, 8 women, and 4 children. Find the number of selections in which all persons have the same gender

<u>Solution</u>:

Required Number = ${}^{6}C_{4} + {}^{8}C_{4} + {}^{4}C_{4}$

• Example (29):

Four persons are selected at random from a group of 6 men, 8 women, and 4 children. Find the number of selections in which all genders are not of the same gender.

<u>Solution</u>:

Required = N(S) - N(all of the same gender) = ${}^{18}C_4 - [{}^{6}C_4 + {}^{8}C_4 + {}^{4}C_4]$ = 3060 - 86 = 2974

Binomial Expansion

(n positive integer)

$$(x + y)^{n} = \sum_{k=0}^{n} {}^{n}C_{k} y^{k} x^{n-k} = {}^{n}C_{0} x^{n} y^{0} + {}^{n}C_{1} x^{n-1} y^{1} + \dots + {}^{n}C_{n} x^{0} y^{n}$$

$$(x + y)^{n} = x^{n} + n x^{n-1} y^{1} + \frac{n(n-1)}{2!} x^{n-2} y^{2} + \dots + y^{n}$$

• The coefficients in the binomial expansion can be determined from Pascal's triangle:

• Example (30):

In the expansion of $(x + y)^4$ the coefficients are respectively: 1, 4, 6, 4, 1.

$$(x + y)^{4} = x^{4} + 4x^{3}y^{1} + 6x^{2}y^{2} + 4x^{3}y^{3} + y^{4}$$

• Example (31) :

In the expansion of $(x + y)^5$ the coefficients are respectively: 1, 5, 10, 10, 5, 1.

 $(x + y)^{5} = x^{5} + 5x^{4}y^{1} + 10x^{3}y^{2} + 10x^{2}y^{3} + 5x^{4}y^{4} + y^{5}$

Multinomial coefficients:

The number of permutations of n objects that contains k_1 of type 1, k_2 of type 2, k_r of type r is denoted and defined by:

$$\binom{n}{k_1, k_2, \dots, k_r} = \frac{n!}{k_1! k_2! \dots k_r!}, \ k_1 + k_2 + \dots + k_r = n$$

• <u>Example (32)</u>:

Determine the number of words that can be formed by rearranging the letters of the word "STATISTICS".

<u>Solution</u>. We have 10 letters containing : 3 "S", 3 "T", 2 "I", 1 "A", and 1 "C".

Required Number = $10! / [3! \times 3! \times 2! \times 1! \times 1!]$ = 50400