King Abdulaziz University FAculty Of Science Department of Statistics

STAT 211

 Probability Theory (1)
STATISTICS \& MATHEMATICS STUDENTS

Introduction to Probability

- Random Experiment:

It is an experiment, whose possible outcomes are known, but cannot be predicted with certainty.

- Examples:

Example 1. Tossing a coin once
Example 2. Rolling a die once
Example 3. Drawing a card from a deck

Introduction to Probability

- Sample Space:

It is a set whose elements represent all possible outcomes of a random experiment. It is usually denoted by S.

- Examples :

In Example (1): $S=\{$ Head, Tail $\}=\{H, T\}$
In Example (2): $S=\{1,2,3,4,5,6\}$
In Example (3): $S=\{1,2, \ldots, 10$, Jack, Queen, King $\}$

Introduction to Probability

- More Examples :

Example (4): Tossing a coin twice

$$
\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\} .
$$

Example (5): Rolling a die twice

$$
S=\{(a, b) \mid a, b=1,2, \ldots 6\}
$$

Example (6): Tossing a coin 3 times
$S=\{H H H, H H T, H T H$, THH, HTT, THT, TTH, TTT $\}$.

Introduction to Probability

- Example (7): When tossing a coin until a Head appears, the sample space is

$$
S=\{H, T H, T T H, \ldots\}
$$

- Example (8): Random selection of a point on a line results in the sample space

$$
S=\{x \mid-\infty<x<\infty\}
$$

- Example (9): Random selection of a point in the x, y plane results in the sample space

Introduction to Probability

$$
S=\{(x, y) \mid-\infty<x<\infty \text { and }-\infty<y<\infty\}
$$

- Example (10): Random selection of a point inside the unit circle results in the sample space $S=\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$
- Example (11): Random selection of a point outside the unit circle results in the sample space

$$
S=\left\{(x, y) \mid x^{2}+y^{2}>1\right\}
$$

Introduction to Probability

- Sample spaces are classified into:
(i) Finite sample spaces: Examples 1-6.
(ii) Denumerable (countable) S. S.: Example 7
(iii)Infinite S. S.: Examples 8-11.

Introduction to Probability

- Event :

It is a subset of the sample space. It is usually denoted by A, B, \ldots.

- Examples:

Example (12): when rolling a die once
$A=$ outcome is an even number $=\{2,4,6\}$
$B=$ outcome is an odd number $=\{1,3,5\}$
$C=$ outcome is divisible by $3=\{3,6\}$

Introduction to Probability

Example (13): when rolling a die twice $A=$ getting a sum of 7
$=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$
$B=$ getting a sum of at least 9
$=\{(3,6),(4,5),(5,4),(6,3),(4,6),(5,5),(6,4)$,
$(5,6),(6,5),(6,6)\}$

Introduction to Probability

C = getting a sum of at most 5
$=\{(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)$,
$(1,4),(2,3),(3,2),(4,1)\}$

Introduction to Probability

- Example (14): When tossing a coin 3 times
$A=$ getting one Head $=\{H T T$, THT, TTH $\}$
$B=$ getting 2 Heads $=\{H H T, H T H, T H H\}$
$\mathrm{C}=$ getting at least 1 Head
$=\{\mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HHH}\}$
$\mathrm{D}=$ getting at most 2 Heads
$=\{$ TTT, HTT, THT, TTH, HHT, HTH, THH $\}$

Introduction to Probability

Logical Dictionary

Symbol	Set Theory	Probability Theory
A	set	event
A^{c}	Complement of A	Event "not A"
ϕ	Empty set	Impossible event
S	Universal set	Sample space
A U B	Union of A and B	Event "A or B"
A $\cap \mathrm{B}$	Intersection of A and B	Event "Both A and B"
$\mathrm{A}-\mathrm{B}$	Difference between A and B	Event "A, but not B"
$\mathrm{A} \cap \mathrm{B}=\phi$	A and B Disjoint sets	A and B Mutually exclusive

Introduction to Probability

- Definition of Probability of an event
(1) Subjective Approach

It depends on the experience and the amount of available information
(2) Empirical Approach

It depends on repeating the experiment " n " times and noting the number " m " of occurrence of the event A, and taking
$P(A)=m / n$ for sufficiently large n.

Introduction to Probability

(3) Classical Approach

It depends on assuming that all outcomes are equally likely. In this case
where

$$
P(A)=\frac{n(A}{n(S)}
$$

$n(A)=$ number of sample points in A
$n(S)=$ number of sample points in S

Introduction to Probability

Mathematical (Axiomatic) Definition

It depends on Axioms of Probability:
(i) Axiom 1: For every event A in $\mathrm{S}: \mathrm{P}(\mathrm{A}) \geq 0$
(ii) Axiom 2: $\mathrm{P}(\mathrm{S})=1$
(iii) Axiom 3: For mutually exclusive events A and B in S :

$$
P(A \cup B)=P(A)+P(B)
$$

Introduction to Probability

Some Basic Theorems

(1) For any event A in S :

$$
0 \leq \mathrm{P}(\mathrm{~A}) \leq 1
$$

(2) For any event A in S :

$$
P(A)+P\left(A^{c}\right)=1
$$

(3) For any events A, B in S :

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Introduction to Probability

(4) For any events A , B in S :

$$
\mathrm{P}(\mathrm{~A}-\mathrm{B})=\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})
$$

Special case:
when $\mathrm{B} \subset \mathrm{A}$, we have

$$
\mathrm{P}(\mathrm{~A}-\mathrm{B})=\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~B})
$$

Introduction to Probability

(5) For events A, B such that $\mathrm{A} \subset \mathrm{B}$:

$$
\mathrm{P}(\mathrm{~A}) \leq \mathrm{P}(\mathrm{~B})
$$

- Special case:

When $\mathrm{A}_{1} \leq \mathrm{A}_{2} \leq \ldots \leq \mathrm{A}_{\mathrm{n}}$ we have

$$
\mathrm{P}\left(\mathrm{~A}_{1}\right) \leq \mathrm{P}\left(\mathrm{~A}_{2}\right) \leq \ldots \leq \mathrm{P}\left(\mathrm{~A}_{\mathrm{n}}\right)
$$

Introduction to Probability

(6) For any events A, B, C in S :

$$
\begin{aligned}
P(A \cup B \cup C)= & P(A)+P(B)+P(C) \\
& -P(A \cap B)-P(A \cap C)-P(B \cap C) \\
& +P(A \cap B \cap C)
\end{aligned}
$$

Introduction to Probability

Remark:

For mutually exclusive events A, B, and C in S :
(1) $P(A \cup B)=P(A)+P(B)$
(2) $P(A \cup B \cup C)=P(A)+P(B)+P(C)$

Introduction to Probability

Examples Based on Classical Definition

- Example (15): When tossing a coin once, the sample space is

$$
\mathrm{S}=\{\text { head }, \text { tail }\}=\{\mathrm{H}, \mathrm{~T}\}
$$

$P($ Head $)=1 / 2$
$P($ Tail $)=1 / 2$

Introduction to Probability

- Example (16): When tossing a coin twice, the sample space is

$$
\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}
$$

$P(2$ Heads $)=1 / 4$,
$P(2$ Tails $)=1 / 4$,
$P(1$ Head $)=1 / 2$
$P($ at least 1 Head $)=3 / 4$

Introduction to Probability

- Example (17): When tossing a coin 3 times, the sample space is S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT $\}$ $P(1$ Head $)=3 / 8$,
$P(2$ Heads $)=3 / 8$,
$P(3$ Heads $)=1 / 8$,
$P($ no Heads $)=1 / 8$

Introduction to Probability

- Example (18): When rolling a die once

$$
S=\{1,2,3,4,5,6\}
$$

$P($ face 1$)=\ldots=P($ face 6$)=1 / 6=0.167$
$P($ even number $)=3 / 6=0.5$,
P (odd number) $=3 / 6=0.5$,
$P($ a number divisible by 3$)=2 / 6=0.333$,
$\mathrm{P}($ a prime number $)=3 / 6=0.5$

Introduction to Probability

- Example (19): Rolling two dice once

$$
S=\{(x, y) \mid x, y=1,2,3,4,5,6\}
$$

P (odd number on first die) $\quad=18 / 36=0.5$
$P($ odd number on second die) $=18 / 36=0.5$
P (odd number on both dice) $=9 / 36=0.25$
$P($ getting a sum of 7$)=6 / 36=0.167$
$P($ equal numbers on both dice $)=6 / 36=0.167$

Introduction to Probability

- Example (20): Let A and B be defined on the same sample space S such that:
$P(A)=0.3, P(B)=0.25, P(A \cap B)=0.07$
- $P(A$ or $B)=P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
\begin{aligned}
& =0.3+0.25-0.07 \\
& =0.48
\end{aligned}
$$

Introduction to Probability

Example (21): Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be defined on the same sample space S such that

$$
\begin{aligned}
& P(A)=0.3, P(B)=0.25, P(C)=0.40, P(A \cap B)=0.07, \\
& P(A \cap C)=0.09, P(B \cap C)=0.08, P(A \cap B \cap C)=0.03
\end{aligned}
$$

$\mathrm{P}($ at least 1 event will occur $)=P(A \cup B \cup C)$

$$
\begin{aligned}
= & P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)- \\
& P(B \cap C)+P(A \cap B \cap C)=0.74
\end{aligned}
$$

Introduction to Probability

P (only 1 event will occur)
$=P\left(A \cap B^{c} \cap C^{c}\right)+P\left(A^{c} \cap B \cap C^{c}\right)+P\left(A^{c} \cap B^{c} \cap C\right)$
$=0.17+0.13+0.26$
$=0.56$
P (only 2 events will occur)

$$
\begin{aligned}
& =P\left(A \cap B \cap C^{c}\right)+P\left(A \cap B^{c} \cap C\right)+P\left(A^{c} \cap B \cap C\right) \\
& =0.15
\end{aligned}
$$

Introduction to Probability

P (at least 2 events will occur)

$$
\begin{aligned}
= & P\left(A \cap B \cap C^{c}\right)+P\left(A \cap B^{c} \cap C\right)+P\left(A^{c} \cap B \cap C\right)+ \\
& P(A \cap B \cap C) \\
= & 0.18
\end{aligned}
$$

$P($ no event will occur $)=P\left[(A \cup B \cup C)^{c}\right]$

$$
\begin{aligned}
& =1-P(A \cup B \cup C) \\
& =1-0.74 \\
& =0.26
\end{aligned}
$$

Introduction to Probability

$$
\begin{aligned}
& P[A \cap(B \cup C)]=P[(A \cap B) \cup(A \cap C)] \\
& \\
& =P(A \cap B)+P(A \cap C)-P(A \cap B \cap C) \\
& \\
& =0.07+0.09-0.03=0.13 \\
& P[A \cup(B \cap C)]=P(A)+P(B \cap C)-P(A \cap B \cap C) \\
&
\end{aligned}
$$

Introduction to Probability

- Permutations:
- A permutation of n different objects is an arrangement of these n objects
- The number of permutations of n different objects, taken all at a time, is n !
- The number of permutations of n different objects, taken $r(r \leq n)$ at a time, is denoted by

$$
{ }^{n} P_{r}=\frac{n!}{(n-r)!}, 0 \leq r \leq n
$$

Introduction to Probability

- Remarks:

(i) ${ }^{n} P_{0}=1$
(ii) ${ }^{n} P_{n}=n$!
(iii) ${ }^{n} P_{1}=n$
(iv) ${ }^{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1)$

Introduction to Probability

- Example (22):

By rearrangement of the letters of the word "PETROLIUM ", the number of

- 2-letter words $={ }^{9} \mathrm{P}_{2}=9 \times 8=72$
- 3-letter words $={ }^{9} P_{3}=9 \times 8 \times 7=504$
- 4-letter words $={ }^{9} P_{4}=9 \times 8 \times 7 \times 6=3024$
- 5-letter words $={ }^{9} \mathrm{P}_{5}=9 \times 8 \times 7 \times 6 \times 5=15120$

Introduction to Probability

- 6-letter words $={ }^{9} \mathrm{P}_{6}=9 \times 8 \times 7 \times 6 \times 5 \times 4$

$$
=60480
$$

- 7 -letter words $={ }^{9} \mathrm{P}_{7}=9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3$

$$
\text { = } 181440
$$

- 8 -letter words $={ }^{9} \mathrm{P}_{8}$

$$
=9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2=362880
$$

- 9 - letter words $=9!=362880$

Introduction to Probability

- Combinations:

The number of groups of r objects, selected at random from n objects is denoted and defined by

$$
\binom{n}{r}={ }^{n} C_{r}=\frac{n!}{r!(n-r)!}, r \leq n
$$

Introduction to Probability

- Remarks:

(i) ${ }^{n} C_{0}=1$
(ii) ${ }^{n} \mathrm{C}_{1}=\mathrm{n}$
(iii) ${ }^{n} C_{n}=1$
(iv) ${ }^{n} C_{r}={ }^{n} C_{n-r}$
(v) ${ }^{n} C_{r}={ }^{n} P_{r} / r$!

Introduction to Probability

- Example (23):

When tossing a coin 4 times, the number of

- outcomes with no Heads $={ }^{4} \mathrm{C}_{0}=1$
- outcomes with 1 Head $\quad={ }^{4} C_{1}=4$
- outcomes with 2 Heads $={ }^{4} C_{2}=6$
- outcomes with 3 Heads $={ }^{4} C_{3}=4$
- outcomes with 4 Heads $={ }^{4} C_{4}=1$

Introduction to Probability

- Basic Counting Principle:

If a process P_{1} can occur in n_{1} different ways and to each of these ways a process P_{2} can occur in n_{2} different ways, then
P_{1} and P_{2} will occur in $n_{1} \times n_{2}$ different ways

Introduction to Probability

- Generalized Counting Principle

If a process P_{1} can occur in n_{1} different ways and to each of these ways a process P_{2} can occur in n_{2} different ways, and so on ..., then Processes P_{1}, P_{2}, \ldots, and P_{k} will occur in

$$
n_{1} \times n_{2} \times \ldots \times n_{k}
$$

different ways

Introduction to Probability

- Example (24):

Five persons are selected at random from a group of 6 men and 8 women. Find the number of selections with 3 men \& 2 women.

- Solution:

Required Number $={ }^{6} \mathrm{C}_{3} \times{ }^{8} \mathrm{C}_{2}=20 \times 28=560$

Introduction to Probability

- Example (25):

Seven persons are selected at random from a group of 6 men, 8 women, and 4 children.
Find the number of selections with 3 men, 2 women, and 2 children.

- Solution:

Required Number $={ }^{6} \mathrm{C}_{3} \times{ }^{8} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2}$

$$
=20 \times 28 \times 6=3360
$$

Introduction to Probability

- Example (26):

Four persons are selected at random from a group of 6 men, 8 women, and 4 children. Find the number of selections with equal number of men and women

- Solution:

$$
\begin{aligned}
\text { Req. } & ={ }^{6} \mathrm{C}_{0} \times{ }^{8} \mathrm{C}_{0} \times{ }^{4} \mathrm{C}_{4}+{ }^{6} \mathrm{C}_{1} \times{ }^{8} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{2}+ \\
& +{ }^{6} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{0}=709
\end{aligned}
$$

Introduction to Probability

- Example (27):

Five persons are selected at random from a group of 6 men, 8 women, and 4 children.
Find the number of selections with 2 men and at least 1 woman.

- Solution:

Required $={ }^{6} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{1}$ $+{ }^{6} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{0}=3240$

Introduction to Probability

- Example (28):

Four persons are selected at random from a group of 6 men, 8 women, and 4 children. Find the number of selections in which all persons have the same gender

- Solution:

Required Number $={ }^{6} \mathrm{C}_{4}+{ }^{8} \mathrm{C}_{4}+{ }^{4} \mathrm{C}_{4}$
$=86$

Introduction to Probability

- Example (29):

Four persons are selected at random from a group of 6 men, 8 women, and 4 children. Find the number of selections in which all genders are not of the same gender.

- Solution:

$$
\begin{aligned}
\text { Required } & =\mathrm{N}(\mathrm{~S})-\mathrm{N}(\text { all of the same gender }) \\
& ={ }^{18} \mathrm{C}_{4}-\left[{ }^{6} \mathrm{C}_{4}+{ }^{8} \mathrm{C}_{4}+{ }^{4} \mathrm{C}_{4}\right] \\
& =3060-86=2974
\end{aligned}
$$

Introduction to Probability

Binomial Expansion

(n positive integer)

$$
\begin{gathered}
(x+y)^{n}=\sum_{k=0}^{n}{ }^{n} C_{k} y^{k} x^{n-k}={ }^{n} C_{0} x^{n} y^{0}+{ }^{n} C_{1} x^{n}{ }^{1} y^{1}+\ldots+{ }^{n} C_{n} x^{0} y^{n} \\
(x+y)^{n}=x^{n}+n x^{n-1} y^{1}+\frac{n(n-1)}{2!} x^{n-2} y^{2}+\ldots+y^{n}
\end{gathered}
$$

Introduction to Probability

- The coefficients in the binomial expansion can be determined from Pascal's triangle:

$$
\begin{array}{ccccccccccc}
& & & & 1 & 1 & 1 & & & \\
& & & 1 & & 2 & & 1 & & & \\
& & 1 & & 3 & & 3 & & 1 & & \\
& 1 & & 4 & & 6 & & 4 & & 1 & \\
& 1 & 5 & & & & & & & & \\
10 & & & 10 & & 5 & & 1
\end{array}
$$

Introduction to Probability

- Example (30):

In the expansion of $(x+y)^{4}$ the coefficients are respectively: 1, 4, 6, 4, 1.

$$
(x+y)^{4}=x^{4}+4 x^{3} y^{1}+6 x^{2} y^{2}+4 x y^{3}+y^{4}
$$

- Example (31) :

In the expansion of $(x+y)^{5}$ the coefficients are respectively: 1, 5, 10, 10, 5, 1.

$$
(x+y)^{5}=x^{5}+5 x^{4} y^{1}+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5}
$$

Introduction to Probability

- Multinomial coefficients:

The number of permutations of n objects that contains k_{1} of type $1, k_{2}$ of type $2, k_{r}$ of type r is denoted and defined by:

$$
\binom{n}{k_{1}, k_{2}, \ldots, k_{r}}=\frac{n!}{k_{1}!k_{2}!\ldots k_{r}!}, k_{1}+k_{2}+\ldots+k_{r}=n
$$

Introduction to Probability

- Example (32):

Determine the number of words that can be formed by rearranging the letters of the word "STATISTICS".

Solution. We have 10 letters containing : 3 " S ", 3 " T ", 2 " I ", 1 " "", and 1 " C ". Required Number $=10$! / [3! x 3 ! $\times 2$! $\times 1$! $\times 1$!]
= 50400

